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POINT SET TOPOLOGY 

Introduction to the block-I 

Unit 1 Ordered Set : This unit deals with ordered set and Axiom Of 

Choice. 

Unit 2 Well Ordering Set : Deals with well ordering set and Zorn‘s 

Lemma. 

Unit 3 Ordinal and Cardinal Numbers : This unit deals with Cardinal 

number and ordinal number. 

Unit 4 Topological Space : Deals with topological space and Ordering 

Topology and Basis of Topology and Closed set, open set topology. 

Unit 5 Interior And Boundary Point of a Set : Deals with interior of 

sets , disjoint sets, Interior Operator and Subspace terminology. 

Unit 6 Continuous Mapping : Deals Continuous mapping also 

Quotient, Open, Perfect Mapping. 

Unit 7 Topological Manifold : Deals topological manifold and Enriched 

Circles. Also deals patchwork. 
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1.0 OBJECTIVE 
 

 Learn Partially Ordered Set 

 Learn Mapping b/w partial ordered set 

 Work on Cartesian Product of partially ordered set 

 To Know about Duality 

 To know about Extrema 

1.1 INTRODUCTION 
 

A totally ordered set is also termed a chain . If the order is partial, so that 

P has two or more incomparable elements, then the ordered set is a 

partially ordered set . See Figure 2 for an example. At the other extreme, 

if no two elements are comparable unless they are equal, then the ordered 

set is an antichai. 

1.1.1 Axiom Of Choice   

The axiom of choice, or AC, is an axiom of set theory equivalent to the 

statement that the Cartesian product of a collection of non-empty sets is 

non-empty. Informally put, the axiom of choice says that given any 

collection of bins, each containing at least one object, it is possible to 

make a selection of exactly one object from each bin, even if the 

collection is infinite. Formally, it states that for every indexed 

family  of nonempty sets there exists an indexed family  of elements. The 

axiom of choice was formulated in 1904 by Ernst Zermelo in order to 

formalize his proof of the well-ordering theorem.  

In many cases, such a selection can be made without invoking the axiom 

of choice; this is in particular the case if the number of sets is finite, or if 

a selection rule is available – some distinguishing property that happens 

to hold for exactly one element in each set. An illustrative example is 

sets picked from the natural numbers. From such sets, one may always 

select the smallest number, e.g. in {{4, 5, 6}, {10, 12}, {1, 400, 617, 

8000}} the smallest elements are {4, 10, 1}. In this case, "select the 

smallest number" is a choice function. Even if infinitely many sets were 

collected from the natural numbers, it will always be possible to choose 

https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Cartesian_product#Infinite_Cartesian_products
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Indexed_family
https://en.wikipedia.org/wiki/Indexed_family
https://en.wikipedia.org/wiki/Nonempty
https://en.wikipedia.org/wiki/Ernst_Zermelo
https://en.wikipedia.org/wiki/Well-ordering_theorem
https://en.wikipedia.org/wiki/Choice_function


                                                                                                                                                                     Notes 

7 

the smallest element from each set to produce a set. That is, the choice 

function provides the set of chosen elements. However, no choice 

function is known for the collection of all non-empty subsets of the real 

numbers (if there are non-constructible reals). In that case, the axiom of 

choice must be invoked. 

Bertrand Russell coined an analogy: for any (even infinite) collection of 

pairs of shoes, one can pick out the left shoe from each pair to obtain an 

appropriate selection; this makes it possible to directly define a choice 

function. For an infinite collection of pairs of socks (assumed to have no 

distinguishing features), there is no obvious way to make a function that 

selects one sock from each pair, without invoking the axiom of choice.  

Although originally controversial, the axiom of choice is now used 

without reservation by most mathematicians,
[3]

 and it is included in the 

standard form of axiomatic set theory, Zermelo–Fraenkel set theory with 

the axiom of choice (ZFC). One motivation for this use is that a number 

of generally accepted mathematical results, such as Tychonoff's theorem, 

require the axiom of choice for their proofs. Contemporary set theorists 

also study axioms that are not compatible with the axiom of choice, such 

as the axiom of determinacy. The axiom of choice is avoided in some 

varieties of constructive mathematics, although there are varieties of 

constructive mathematics in which the axiom of choice is embraced. 

1.1.2 Existence of Choice Function  

A choice function is a function f, defined on a collection X of nonempty 

sets, such that for every set A in X, f(A) is an element of A. With this 

concept, the axiom can be stated: 

Axiom — For any set X of nonempty sets, there exists a choice 

function f defined on X. 

A choice function is defined to exist if there is a "best" (under a binary 

relation R) element in all non-empty compact subsets of S, the set of all 

possible alternatives, whereas a demand correspondence exists if there is 

a "best" element in only the budget sets of S. Some basic restrictions on 

R are considered. First, if the "at least as good as" sets are closed, then 

none of the standard restrictions on R are shown to be necessary for the 

existence of a demand correspondence: the "domination" of finite sets is 

https://en.wikipedia.org/wiki/Constructible_universe
https://en.wikipedia.org/wiki/Bertrand_Russell
https://en.wikipedia.org/wiki/Axiom_of_choice#cite_note-3
https://en.wikipedia.org/wiki/Axiomatic_set_theory
https://en.wikipedia.org/wiki/ZFC
https://en.wikipedia.org/wiki/Tychonoff%27s_theorem
https://en.wikipedia.org/wiki/Axiom_of_determinacy
https://en.wikipedia.org/wiki/Constructivism_(mathematics)
https://en.wikipedia.org/wiki/Choice_function
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necessary and sufficient. This is shown to imply that acyclicity of R is 

necessary and sufficient for the existence of choice functions. Second, if 

either there is a restriction on convergent P monotone sequences or if R 

satisfies a regularity condition, then a condition on cyclical sets of 

alternatives is enough to guarantee the existence of demand 

correspondences. For the existence of rational choice functions, however, 

reflexivity, completeness, and transitivity of R, together with the above-

mentioned condition on P-monotone sequences, are necessary and 

sufficient. Finally, if the strictly preferred sets are taken to be convex, 

then under a restriction weaker than the first, a best element in budget 

sets exists. 

Thus, the negation of the axiom of choice states that there exists a 

collection of nonempty sets that has no choice function. 

Each choice function on a collection X of nonempty sets is an element of 

the Cartesian product of the sets in X. This is not the most general 

situation of a Cartesian product of a family of sets, where a given set can 

occur more than once as a factor; however, one can focus on elements of 

such a product that select the same element every time a given set 

appears as factor, and such elements correspond to an element of the 

Cartesian product of all distinct sets in the family. The axiom of choice 

asserts the existence of such elements; it is therefore equivalent to: 

Given any family of nonempty sets, their Cartesian product is a 

nonempty set. 

1.1.3 Varient 

There are many other equivalent statements of the axiom of choice. 

These are equivalent in the sense that, in the presence of other basic 

axioms of set theory, they imply the axiom of choice and are implied by 

it. 

One variation avoids the use of choice functions by, in effect, replacing 

each choice function with its range. 

Given any set X of pairwise disjoint non-empty sets, there exists at least 

one set C that contains exactly one element in common with each of the 

sets in X.  

https://en.wikipedia.org/wiki/Cartesian_product#Infinite_products
https://en.wikipedia.org/wiki/Indexed_family
https://en.wikipedia.org/wiki/Pairwise_disjoint
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This guarantees for any partition of a set X the existence of a 

subset C of X containing exactly one element from each part of the 

partition. 

Another equivalent axiom only considers collections X that are 

essentially powersets of other sets: 

For any set A, the power set of A (with the empty set removed) has a 

choice function. 

Authors who use this formulation often speak of the choice function on 

A, but be advised that this is a slightly different notion of choice 

function. Its domain is the powerset of A (with the empty set removed), 

and so makes sense for any set A, whereas with the definition used 

elsewhere in this article, the domain of a choice function on a collection 

of sets is that collection, and so only makes sense for sets of sets. With 

this alternate notion of choice function, the axiom of choice can be 

compactly stated as 

Every set has a choice function,  

which is equivalent to 

For any set A there is a function f such that for any non-empty subset B 

of A, f(B) lies in B. 

The negation of the axiom can thus be expressed as: 

There is a set A such that for all functions f (on the set of non-empty 

subsets of A), there is a B such that f(B) does not lie in B. 

1.1.4 Examples                                                                                        

The nature of the individual nonempty sets in the collection may make it 

possible to avoid the axiom of choice even for certain infinite 

collections. For example, suppose that each member of the 

collection X is a nonempty subset of the natural numbers. Every such 

subset has a smallest element, so to specify our choice function we can 

simply say that it maps each set to the least element of that set. This 

gives us a definite choice of an element from each set, and makes it 

unnecessary to apply the axiom of choice. 

https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Power_set
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The difficulty appears when there is no natural choice of elements from 

each set. If we cannot make explicit choices, how do we know that our 

set exists? For example, suppose that X is the set of all non-empty 

subsets of the real numbers. First we might try to proceed as if X were 

finite. If we try to choose an element from each set, then, because X is 

infinite, our choice procedure will never come to an end, and 

consequently, we shall never be able to produce a choice function for all 

of X. Next we might try specifying the least element from each set. But 

some subsets of the real numbers do not have least elements. For 

example, the open interval (0,1) does not have a least element: if x is in 

(0,1), then so is x/2, and x/2 is always strictly smaller than x. So this 

attempt also fails. 

Additionally, consider for instance the unit circle S, and the action 

on S by a group G consisting of all rational rotations. Namely, these are 

rotations by angles which are rational multiples of π. Here G is countable 

while S is uncountable. Hence S breaks up into uncountably many orbits 

under G. Using the axiom of choice, we could pick a single point from 

each orbit, obtaining an uncountable subset X of S with the property that 

all of its translates by G are disjoint from X. The set of those translates 

partitions the circle into a countable collection of disjoint sets, which are 

all pairwise congruent. Since X is not measurable for any rotation-

invariant countably additive finite measure on S, finding an algorithm to 

select a point in each orbit requires the axiom of choice. See non-

measurable set for more details. 

The reason that we are able to choose least elements from subsets of the 

natural numbers is the fact that the natural numbers are well-ordered: 

every nonempty subset of the natural numbers has a unique least element 

under the natural ordering. One might say, "Even though the usual 

ordering of the real numbers does not work, it may be possible to find a 

different ordering of the real numbers which is a well-ordering. Then our 

choice function can choose the least element of every set under our 

unusual ordering." The problem then becomes that of constructing a 

well-ordering, which turns out to require the axiom of choice for its 

existence; every set can be well-ordered if and only if the axiom of 

choice holds. 

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Non-measurable_set#Example
https://en.wikipedia.org/wiki/Non-measurable_set#Example
https://en.wikipedia.org/wiki/Well-order
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1.1.5 Independence 

Kurt Gödel showed that the negation of the axiom of choice is not a 

theorem of ZF by constructing an inner model (the constructible 

universe) which satisfies ZFC and thus showing that ZFC is consistent if 

ZF itself is consistent. In 1963, Paul Cohen employed the technique 

of forcing, developed for this purpose, to show that, assuming ZF is 

consistent, the axiom of choice itself is not a theorem of ZF. He did this 

by constructing a much more complex model which satisfies ZF¬C (ZF 

with the negation of AC added as axiom) and thus showing that ZF¬C is 

consistent
[15]

. 

Together these results establish that the axiom of choice is logically 

independent of ZF. The assumption that ZF is consistent is harmless 

because adding another axiom to an already inconsistent system cannot 

make the situation worse. Because of independence, the decision whether 

to use the axiom of choice (or its negation) in a proof cannot be made by 

appeal to other axioms of set theory. The decision must be made on other 

grounds. 

One argument given in favor of using the axiom of choice is that it is 

convenient to use it because it allows one to prove some simplifying 

propositions that otherwise could not be proved. Many theorems which 

are provable using choice are of an elegant general character: 

every ideal in a ring is contained in a maximal ideal, every vector 

space has a basis, and every product of compact spaces is compact. 

Without the axiom of choice, these theorems may not hold for 

mathematical objects of large cardinality. 

The proof of the independence result also shows that a wide class of 

mathematical statements, including all statements that can be phrased in 

the language of Peano arithmetic, are provable in ZF if and only if they 

are provable in ZFC.
[16]

 Statements in this class include the statement 

that P = NP, the Riemann hypothesis, and many other unsolved 

mathematical problems. When one attempts to solve problems in this 

class, it makes no difference whether ZF or ZFC is employed if the only 

question is the existence of a proof. It is possible, however, that there is a 

shorter proof of a theorem from ZFC than from ZF. 

https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/Inner_model
https://en.wikipedia.org/wiki/Constructible_universe
https://en.wikipedia.org/wiki/Constructible_universe
https://en.wikipedia.org/wiki/Paul_Cohen_(mathematician)
https://en.wikipedia.org/wiki/Forcing_(mathematics)
https://en.wikipedia.org/wiki/Axiom_of_choice#cite_note-15
https://en.wikipedia.org/wiki/Independence_(mathematical_logic)
https://en.wikipedia.org/wiki/Independence_(mathematical_logic)
https://en.wikipedia.org/wiki/Ideal_(ring_theory)
https://en.wikipedia.org/wiki/Maximal_ideal
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Basis_(linear_algebra)
https://en.wikipedia.org/wiki/Product_topology
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Peano_arithmetic
https://en.wikipedia.org/wiki/Axiom_of_choice#cite_note-16
https://en.wikipedia.org/wiki/P_%3D_NP
https://en.wikipedia.org/wiki/Riemann_hypothesis
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The axiom of choice is not the only significant statement which is 

independent of ZF. For example, the generalized continuum 

hypothesis (GCH) is not only independent of ZF, but also independent of 

ZFC. However, ZF plus GCH implies AC, making GCH a strictly 

stronger claim than AC, even though they are both independent of ZF. 

 

Check in Progress-I 

Note: i) Write your answers in the space given below.  

Q. 1 Define Independence 

Solution 

…………………………………………………………………….. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………

….. 

Q. 2 State Varient. 

Solution 

…………………………………………………………………….. 

……………………………………………………………………………. 

……………………………………………………………………………. 

……………………………………………………………………………

….. 

 

1.2 ORDERED SET 

 

Let P be a set and ⊑ be a (partial) order on P.  Then P and ⊑ form 

a (partially) ordered set.  

https://en.wikipedia.org/wiki/Continuum_hypothesis#The_generalized_continuum_hypothesis
https://en.wikipedia.org/wiki/Continuum_hypothesis#The_generalized_continuum_hypothesis
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#order
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If the order is total, so that no two elements of P are incomparable, then 

the ordered set is a totally ordered set.  Totally ordered sets are the ones 

people are first familiar with.  See Figure 1 for an example.  

A totally ordered set is also termed a chain.  

If the order is partial, so that P has two or more incomparable elements, 

then the ordered set is a partially ordered set.  See Figure 2 for an 

example.  

At the other extreme, if no two elements are comparable unless they are 

equal, then the ordered set is an antichain.  See Figure 3.  

On any set, = is an order; this is termed the discrete order on the 

set.  Any set ordered by = forms an antichain.  

It is common for people to refer briefly though inaccurately to an ordered 

set as an order, to a totally ordered set as a total order, and to a partially 

ordered set as a partial order.  It is usually clear by context whether 

"order" refers literally to an order (an order relation) or by synecdoche to 

an ordered set.  

Examples:  

1. The integers with ≤ form an ordered set (see Figure 1).  ≤ is 

a total order on the integers, so this ordered set is a chain.  

2. Any powerset with ⊆ forms an ordered set (see Figure 2).  This is 

a partially ordered set because not all subsets are related by ⊆, for 

example {a} || {b, r}.  

3. A set of unrelated items, ordered by =, is the discrete order on 

that set and forms an antichain .  

4. The classes in java.util with the subclass relation form an ordered 

set (see Figure 4).  This set is partially ordered, because not all 

classes in the set are related by the subclass relations (for 

example, Vector and HashSet are not related and are 

thus incomparable:  Vector || HashSet).  

5. A set of binary strings with the prefix relation forms an ordered 

set (see Figure 5).  This is set is partially ordered because not all 

strings are related by the prefix relation, for example 01 || 10.  

https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#total-order
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#incomparable
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure1
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#total-order
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#partial-order
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#incomparable
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure2
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure3
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#antichain
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#order
https://www.ics.uci.edu/~alspaugh/cls/shr/glossaryExternal.html#synecdoche
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#ordered-set
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure1
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#total-order
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#chain
https://www.ics.uci.edu/~alspaugh/cls/shr/powerset.html
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure2
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#discrete-order
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#antichain
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure4
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#incomparable
https://www.ics.uci.edu/~alspaugh/cls/shr/binaryString.html
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure5
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6. The (non-empty) conjunctions of any of the propositions, q, 

and r, ordered by implication, form an ordered set .  In this 

set, p∧q implies q, but p∧q neither implies nor is implied by q∧r, 

so p∧q and q∧r are incomparable (p∧q # q∧r) .  

7. The positive integers N with the divisibility relation form an 

ordered set.  The divisibility relation relates m to n if m divides n, 

written m | n.  Thus 2 | 6, and 3 | 6 but not 4 | 6 because 4 does 

not divide 6.  And for any n∈N, 1 | n and n | n.  A part of this 

ordered set is shown in Figure 7.  

 

Figure 1.1     The Point of a,b,c in order ⊑ 

 

 

Figure 1.2 

 

Figure 1.3 

https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#incomparable
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure7
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Figure 1.4 

1.2.1 Duality 

Each ordered set P corresponds to another ordered set P
∂
, the dual of P, 

defined by:  y⊑x in P
∂
 iff x⊑y in P.  

Each statement Φ about P corresponds to a dual 

statement Φ
∂
 about P

∂
.  Φ

∂
 is obtained by replacing each occurrence 

of ⊑ in Φ by ⊒, and each occurrence of ⊒ in Φ by ⊑.  Φ is true about P if 

and only if Φ
∂
 is true about P

∂
.  Generalizing, it can be shown that if a 

statement Φ is true about all ordered sets, then its dual statement Φ
∂
 is 

also true.  This assertion is the Duality Principle.  

Pairs of dual concepts that are defined in terms of ⊑ and ⊒ (such 

as upper bound and lower bound, below), are also exchanged in dual 

statements.  

Example:  Let Q be the ordered set shown in Figure 7, in which ⊑ is the 

integer divides relation, with the divisor "lower than" the dividend.  Then 

the ordered set of the positive integers to 15 ordered by 

the converse of divides (now with the divisor considered "higher" than 

the dividend), is the dual Q
∂
 of Q.  The converse of |, |

-1
, relates two 

integers if one divides the other, but unlike | it classifies the numerically-

smaller integer as the "higher" one by this relation, so that for this order 

2⊑1, for example.  Q
∂
 is shown in Figure 8.  In Q, 4⊑8, so we know 

without looking at Figure 8 that in Q
∂
, the dual statement 4⊒8 holds in 

the relation for that ordered set.  

1.2.2 Extrema 

Let S be an ordered set.  

 u∈S is said to be maximal in S iff there is no v∈S such that u≤v.  A 

set may have any number of maximal elements, including zero.  

https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#upper-bound
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#lower-bound
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure7
https://www.ics.uci.edu/~alspaugh/cls/shr/relation.html#converse
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure8
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#Figure8
https://www.ics.uci.edu/~alspaugh/cls/shr/orderedSet.html#dual-statement


Notes 

16 

 If u is S's only maximal element, then u is the maximum of S.  

 The maximum element u (if it exists) is also called the top of S and 

is denoted by ⊤.  

 Dually, t∈S is said to be minimal in S iff there is no s∈S such 

that s≤t.  A set may have any number of minimal elements, 

including zero.  

 If t is S's only minimal element, then t is the minimum of S.  

 The minimum element t (if it exists) is also called 

the bottom of S and is denoted by ⊥.  

Examples:  

1. p∧q∧r is a maximal element of the set in Figure 1.4..  Since it is 

the only maximal element, it is the maximum or top.  

2. The set in Figure 1.4  has three minimal elements (p, q, and r).  It 

has no minimum (because it has three minimal elements).  

3. The set of all integers has no maximal or minimal elements 

(Figure 1).  It has no maximum (because it has no maximal 

elements); similarly, it has no minimum.  

 

1.3 PARTIALLY ORDERED SET 

Especially order theory, a partially ordered set (also poset) formalizes 

and generalizes the intuitive concept of an ordering, sequencing, or 

arrangement of the elements of a set. A poset consists of a set together 

with a binary relation indicating that, for certain pairs of elements in the 

set, one of the elements precedes the other in the ordering. The relation 

itself is called a "partial order." The word partial in the names "partial 

order" and "partially ordered set" is used as an indication that not every 

pair of elements needs to be comparable. That is, there may be pairs of 

elements for which neither element precedes the other in the poset. 

Partial orders thus generalize total orders, in which every pair is 

comparable. 

Formally, a partial order is any binary relation that is reflexive (each 

element is comparable to itself), antisymmetric (no two different 
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elements precede each other), and transitive (the start of a chain of 

precedence relations must precede the end of the chain). 

One familiar example of a partially ordered set is a collection of people 

ordered by genealogical descendancy. Some pairs of people bear the 

descendant-ancestor relationship, but other pairs of people are 

incomparable, with neither being a descendant of the other. 

A poset can be visualized through its Hasse diagram, which depicts the 

ordering relation. 

A (non-strict) partial order
[2]

 is a binary relation ≤ over a set P satisfying 

particular axioms which are discussed below. When a ≤ b, we say 

that a is related to b. (This does not imply that b is also related to a, 

because the relation need not be symmetric.) 

The axioms for a non-strict partial order state that the relation ≤ 

is reflexive, antisymmetric, and transitive. That is, for all a, b, and c in P, 

it must satisfy: 

1. a ≤ a (reflexivity: every element is related to itself). 

2. if a ≤ b and b ≤ a, then a = b (antisymmetry: two distinct 

elements cannot be related in both directions). 

3. if a ≤ b and b ≤ c, then a ≤ c (transitivity: if a first element is 

related to a second element, and, in turn, that element is related 

to a third element, then the first element is related to the third 

element). 

In other words, a partial order is an antisymmetric preorder. 

A set with a partial order is called a partially ordered set (also called 

a poset). The term ordered set is sometimes also used, as long as it is 

clear from the context that no other kind of order is meant. In 

particular, totally ordered sets can also be referred to as "ordered sets", 

especially in areas where these structures are more common than posets. 

For a, b, elements of a partially ordered set P, if a ≤ b or b ≤ a, 

then a and b are comparable. Otherwise they are incomparable. In the 

figure on top-right, e.g. {x} and {x,y,z} are comparable, while {x} and 

{y} are not. A partial order under which every pair of elements is 

comparable is called a total order or linear order; a totally ordered set is 
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also called a chain (e.g., the natural numbers with their standard order). 

A subset of a poset in which no two distinct elements are comparable is 

called an antichain (e.g. the set of singletons{{x}, {y}, {z}} in the top-

right figure). An element a is said to be strictly less than an element b, 

if a ≤ b and a≠b. An element a is said to be covered by another 

element b, written a<:b, if a is strictly less than b and no third 

element c fits between them; formally: if both a≤b and a≠b are true, 

and a≤c≤b is false for each c with a≠c≠b. A more concise definition will 

be given below using the strict order corresponding to "≤". For example, 

{x} is covered by {x,z} in the top-right figure, but not by {x,y,z}. 

Examples 

Standard examples of posets arising in mathematics include: 

 The real numbers ordered by the standard less-than-or-equal relation 

≤ (a totally ordered set as well). 

 The set of subsets of a given set (its power set) ordered 

by inclusion (see the figure on top-right). Similarly, the set 

of sequences ordered by subsequence, and the set of stringsordered 

by substring. 

 The set of natural numbers equipped with the relation of divisibility. 

 The vertex set of a directed acyclic graph ordered by reachability. 

 The set of subspaces of a vector space ordered by inclusion. 

 For a partially ordered set P, the sequence space containing 

all sequences of elements from P, where sequence a precedes 

sequence b if every item in a precedes the corresponding item in b. 

Formally, (an)n∈ℕ ≤ (bn)n∈ℕ if and only if an ≤ bn for all n in ℕ, i.e. 

a componentwise order. 

 For a set X and a partially ordered set P, the function 

space containing all functions from X to P, where f ≤ g if and only 

if f(x) ≤ g(x) for all x in X. 

 A fence, a partially ordered set defined by an alternating sequence of 

order relations a < b > c < d ... 

 The set of events in special relativity and, in most cases,
[3]

 general 

relativity, where for two events X and Y, X ≤ Y if and only if Y is in 
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the future light cone of X. An event Y can only be causally affected 

by X if X ≤ Y. 

1.3.1 Extrema 

There are several notions of "greatest" and "least" element in a poset P, 

notably:  

 Greatest element and least element: An element g in P is a greatest 

element if for every element a in P, a ≤ g. An element m in P is a 

least element if for every element a in P, a ≥ m. A poset can only 

have one greatest or least element. 

 Maximal elements and minimal elements: An element g in P is a 

maximal element if there is no element a in P such that a > g. 

Similarly, an element m in P is a minimal element if there is no 

element a in P such that a < m. If a poset has a greatest element, it 

must be the unique maximal element, but otherwise there can be 

more than one maximal element, and similarly for least elements and 

minimal elements. 

 Upper and lower bounds: For a subset A of P, an element x in P is an 

upper bound of A if a ≤ x, for each element a in A. In 

particular, x need not be in A to be an upper bound of A. Similarly, 

an element x in P is a lower bound of A if a ≥ x, for each 

element a in A. A greatest element of P is an upper bound of P itself, 

and a least element is a lower bound of P. 

For example, consider the positive integers, ordered by divisibility: 1 is a 

least element, as it divides all other elements; on the other hand this 

poset does not have a greatest element (although if one would include 0 

in the poset, which is a multiple of any integer, that would be a greatest 

element; see figure). This partially ordered set does not even have any 

maximal elements, since any g divides for instance 2g, which is distinct 

from it, so g is not maximal. If the number 1 is excluded, while keeping 

divisibility as ordering on the elements greater than 1, then the resulting 

poset does not have a least element, but any prime number is a minimal 

element for it. In this poset, 60 is an upper bound (though not a least 

upper bound) of the subset {2,3,5,10}, which does not have any lower 
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bound (since 1 is not in the poset); on the other hand 2 is a lower bound 

of the subset of powers of 2, which does not have any upper bound. 

1.3.2 Orders on the Cartesian product of partially 

ordered sets 

In order of increasing strength, i.e., decreasing sets of pairs, three of the 

possible partial orders on the Cartesian product of two partially ordered 

sets are (see figures): 

 the lexicographical order:   (a,b) ≤ (c,d) if a < c or (a = c and b ≤ d); 

 the product order:   (a,b) ≤ (c,d) if a ≤ c and b ≤ d; 

 the reflexive closure of the direct product of the corresponding strict 

orders:   (a,b) ≤ (c,d) if (a < c and b < d) or (a = c and b = d). 

All three can similarly be defined for the Cartesian product of more than 

two sets. 

Applied to ordered vector spaces over the same field, the result is in each 

case also an ordered vector space. 

1.3.3 Sums of partially ordered sets 

Another way to combine two posets is the ordinal sum
[4]

 (or linear 

sum
[5]

), Z = X ⊕ Y, defined on the union of the underlying 

sets X and Y by the order a ≤Z b if and only if: 

 a, b ∈ X with a ≤X b, or 

 a, b ∈ Y with a ≤Y b, or 

 a ∈ X and b ∈ Y. 

If two posets are well-ordered, then so is their ordinal sum.
[6]

 The ordinal 

sum operation is one of two operations used to form series-parallel 

partial orders, and in this context is called series composition. The other 

operation used to form these orders, the disjoint union of two partially 

ordered sets (with no order relation between elements of one set and 

elements of the other set) is called in this context parallel composition. 
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1.3.4 Strict and non-strict partial orders 

In some contexts, the partial order defined above is called a non-

strict (or reflexive) partial order. In these contexts, 

a strict(or irreflexive) partial order "<" is a binary relation that 

is irreflexive, transitive and asymmetric, i.e. which satisfies for all a, b, 

and c in P: 

 not a < a (irreflexivity), 

 if a < b and b < c then a < c (transitivity), and 

 if a < b then not b < a (asymmetry; implied by irreflexivity and 

transitivity
[7]

). 

Strict and non-strict partial orders are closely related. A non-strict partial 

order may be converted to a strict partial order by removing all 

relationships of the form a ≤ a. Conversely, a strict partial order may be 

converted to a non-strict partial order by adjoining all relationships of 

that form. Thus, if "≤" is a non-strict partial order, then the 

corresponding strict partial order "<" is the irreflexive kernel given by: 

a < b if a ≤ b and a ≠ b 

Conversely, if "<" is a strict partial order, then the corresponding 

non-strict partial order "≤" is the reflexive closure given by: 

a ≤ b if a < b or a = b. 

This is the reason for using the notation "≤". 

Using the strict order "<", the relation "a is covered by b" can be 

equivalently rephrased as "a<b, but not a<c<b for any c". Strict 

partial orders are useful because they correspond more directly 

to directed acyclic graphs (dags): every strict partial order is a 
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dag, and the transitive closure of a dag is both a strict partial 

order and also a dag itself. 

1.3.5 Mappings between partially ordered sets 

Given two partially ordered sets (S,≤) and (T,≤), a function f: S → T is 

called order-preserving, or monotone, or isotone, if for 

all x and y in S, x≤y implies f(x) ≤ f(y). If (U,≤) is also a partially ordered 

set, and both f: S → T and g: T → U are order-preserving, 

their composition(g∘f): S → U is order-preserving, too. A 

function f: S → T is called order-reflecting if for all x and y in S, f(x) 

≤ f(y) implies x≤y. If f is both order-preserving and order-reflecting, then 

it is called an order-embedding of (S,≤) into (T,≤). In the latter case, f is 

necessarily injective, since f(x) = f(y) implies x ≤ y and y ≤ x. If an order-

embedding between two posets S and T exists, one says that S can 

be embedded into T. If an order-embedding f: S → T is bijective, it is 

called an order isomorphism, and the partial orders (S,≤) and (T,≤) are 

said to be isomorphic. Isomorphic orders have structurally similar Hasse 

diagrams (cf. right picture). It can be shown that if order-preserving 

maps f: S → T and g: T → S exist such that g∘f and f∘g yields the identity 

functionon S and T, respectively, then S and T are order-isomorphic.  

For example, a mapping f: ℕ → ℙ(ℕ) from the set of natural numbers 

(ordered by divisibility) to the power set of natural numbers (ordered by 

set inclusion) can be defined by taking each number to the set of 

its prime divisors. It is order-preserving: if x divides y, then each prime 

divisor of x is also a prime divisor of y. However, it is neither injective 

(since it maps both 12 and 6 to {2,3}) nor order-reflecting (since besides 

12 doesn't divide 6). Taking instead each number to the set of its prime 

power divisors defines a map g: ℕ → ℙ(ℕ) that is order-preserving, 

order-reflecting, and hence an order-embedding. It is not an order-

isomorphism (since it e.g. doesn't map any number to the set {4}), but it 

can be made one by restricting its codomain to g(ℕ). The right picture 

shows a subset of ℕ and its isomorphic image under g. The construction 

of such an order-isomorphism into a power set can be generalized to a 
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wide class of partial orders, called distributive lattices, see "Birkhoff's 

representation theorem". 

1.3.6 Well Ordered Set 
 

A well-order (or well-ordering or well-order relation) on a set S is a total 

order on S with the property that every non-empty subset of S has a least 

element in this ordering. The set S together with the well-order relation is 

then called a well-ordered set. In some academic articles and textbooks 

these terms are instead written as wellorder, wellordered, 

and wellordering or well order, well ordered, and well ordering. 

Every non-empty well-ordered set has a least element. Every 

element s of a well-ordered set, except a possible greatest element, has a 

unique successor (next element), namely the least element of the subset 

of all elements greater than s. There may be elements besides the least 

element which have no predecessor (see Natural numbers below for an 

example). In a well-ordered set S, every subset T which has an upper 

bound has a least upper bound, namely the least element of the subset of 

all upper bounds of T in S. 

If ≤ is a non-strict well ordering, then < is a strict well ordering. A 

relation is a strict well ordering if and only if it is a well-founded strict 

total order. The distinction between strict and non-strict well orders is 

often ignored since they are easily interconvertible. 

Every well-ordered set is uniquely order isomorphic to a unique ordinal 

number, called the order type of the well-ordered set. The well-ordering 

theorem, which is equivalent to the axiom of choice, states that every set 

can be well ordered. If a set is well ordered (or even if it merely admits 

a well-founded relation), the proof technique of transfinite induction can 

be used to prove that a given statement is true for all elements of the set. 

The observation that the natural numbers are well ordered by the usual 

less-than relation is commonly called the well-ordering principle (for 

natural numbers). 
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Note: i) Write your answers in the space given below.  

Q. 1 Define Well Ordered Set. 

Solution 

…………………………………………………………………….. 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define Extrema. 

Solution 

…………………………………………………………………….. 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

1.4 ORDINAL NUMBERS 

Every well-ordered set is uniquely order isomorphic to a unique ordinal 

number, called the order type of the well-ordered set. The position of 

each element within the ordered set is also given by an ordinal number. 

In the case of a finite set, the basic operation of counting, to find the 

ordinal number of a particular object, or to find the object with a 

particular ordinal number, corresponds to assigning ordinal numbers one 

by one to the objects. The size (number of elements, cardinal number) of 

a finite set is equal to the order type. Counting in the everyday sense 

typically starts from one, so it assigns to each object the size of the initial 

segment with that object as last element. Note that these numbers are one 

more than the formal ordinal numbers according to the isomorphic order, 

because these are equal to the number of earlier objects (which 

corresponds to counting from zero). Thus for finite n, the expression "n-

th element" of a well-ordered set requires context to know whether this 

counts from zero or one. In a notation "β-th element" where β can also be 

an infinite ordinal, it will typically count from zero. 
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For an infinite set the order type determines the cardinality, but not 

conversely: well-ordered sets of a particular cardinality can have many 

different order types. For a countably infinite set, the set of possible 

order types is even uncountable. 

1.4.1 Natural numbers 

The standard ordering ≤ of the natural numbers is a well ordering and has 

the additional property that every non-zero natural number has a unique 

predecessor. 

Another well ordering of the natural numbers is given by defining that all 

even numbers are less than all odd numbers, and the usual ordering 

applies within the evens and the odds: 

0 2 4 6 8 ... 1 3 5 7 9 ... 

This is a well-ordered set of order type ω + ω. Every element has a successor 

(there is no largest element). Two elements lack a predecessor: 0 and 1. 

 

1.4.2 Integers 

Unlike the standard ordering ≤ of the natural numbers, the standard 

ordering ≤ of the integers is not a well ordering, since, for example, 

the set of negative integers does not contain a least element. 

The following relation R is an example of well ordering of the 

integers: x R y if and only if one of the following conditions holds: 

1. x = 0 

2. x is positive, and y is negative 

3. x and y are both positive, and x ≤ y 

4. x and y are both negative, and |x| ≤ |y| 

This relation R can be visualized as follows: 

0 1 2 3 4 ... −1 −2 −3 ... 

R is isomorphic to the ordinal number ω + ω. 

Another relation for well ordering the integers is the following 

definition: x ≤z y iff (|x| < |y| or (|x| = |y| and x ≤ y)). This well 

order can be visualized as follows: 
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0 −1 1 −2 2 −3 3 −4 4 ... 

This has the order type ω. 

1.4.3 Reals 

The standard ordering ≤ of any real interval is not a well ordering, since, 

for example, the open interval (0, 1) ⊆ [0,1] does not contain a least 

element. From the ZFC axioms of set theory (including the axiom of 

choice) one can show that there is a well order of the reals. Also Wacław 

Sierpiński proved that ZF + GCH (the generalized continuum 

hypothesis) imply the axiom of choice and hence a well order of the 

reals. Nonetheless, it is possible to show that the ZFC+GCH axioms 

alone are not sufficient to prove the existence of a definable (by a 

formula) well order of the reals.
[1]

 However it is consistent with ZFC that 

a definable well ordering of the reals exists—for example, it is consistent 

with ZFC that V=L, and it follows from ZFC+V=L that a particular 

formula well orders the reals, or indeed any set. 

An uncountable subset of the real numbers with the standard ordering ≤ 

cannot be a well order: Suppose X is a subset of R well ordered by ≤. For 

each x in X, let s(x) be the successor of x in ≤ ordering on X (unless x is 

the last element of X). Let A = { (x, s(x)) | x ∈ X } whose elements are 

nonempty and disjoint intervals. Each such interval contains at least one 

rational number, so there is an injective function from A to Q. There is an 

injection from X to A (except possibly for a last element of X which 

could be mapped to zero later). And it is well known that there is an 

injection from Q to the natural numbers (which could be chosen to avoid 

hitting zero). Thus there is an injection from X to the natural numbers 

which means that X is countable. On the other hand, a countably infinite 

subset of the reals may or may not be a well order with the standard "≤". 

For example, 

 The natural numbers are a well order under the standard 

ordering ≤. 

 The set {1/n : n =1,2,3,...} has no least element and is 

therefore not a well order under standard ordering ≤. 

Examples of well orders: 
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https://en.wikipedia.org/wiki/Generalized_continuum_hypothesis
https://en.wikipedia.org/wiki/Generalized_continuum_hypothesis
https://en.wikipedia.org/wiki/Well-order#cite_note-1
https://en.wikipedia.org/wiki/V%3DL
https://en.wikipedia.org/wiki/Injective_function
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 The set of numbers { − 2
−n

 | 0 ≤ n < ω } has order type ω. 

 The set of numbers { − 2
−n

 − 2
−m−n

 | 0 ≤ m,n < ω } has 

order type ω². The previous set is the set of limit 

points within the set. Within the set of real numbers, 

either with the ordinary topology or the order topology, 0 

is also a limit point of the set. It is also a limit point of 

the set of limit points. 

 The set of numbers { − 2
−n

 | 0 ≤ n < ω } ∪ { 1 } has order 

type ω + 1. With the order topology of this set, 1 is a 

limit point of the set. With the ordinary topology (or 

equivalently, the order topology) of the real numbers it is 

not. 

1.5 SUMMARY 

We study in this units about ordered set and its proposition and 

properties. We study Strict and Non-Strict partial Ordered set. We study 

Mapping b/w partial ordered set. Se study axiom of choice function.  

1.6 KEYWORD 

Partial : Existing only in part; incomplete 

Axiom : A statement or proposition which is regarded as being 

established, accepted, or self-evidently true. 

1.7 EXERCISE  

Q. 1 What is well order Sets give example of well order 

sets?  

Q. 2 Find existence of choice function with axiom . 

Q. 3 What is strict and non-strict partial ordered sets. ? 

Q. 4 Give example of ordinals numbers. 

Q. 5 Understanding mpping between partial ordered sets . 

1.8 ANSWER FOR CHECK IN PROGRESS  

 

https://en.wikipedia.org/wiki/Limit_point
https://en.wikipedia.org/wiki/Limit_point
https://en.wikipedia.org/wiki/Order_topology
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Check in Progress-I 

Answer  Q. 1 Check in Section 1.5 

              Q 2 Check in Section 1.3 

Check in Progress-II 

Answer  Q. 1 Check in Section 3.6 

              Q 2 Check in Section 3.1 
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UNIT 2 ORDERED SET –II 

STRUCTURE 

2.0 Objective 

2.1 Introduction 

2.2 Well-Ordering Theorem 

2.2.1 Minimal Uncountable well-ordered set 

2.2.2 The Principle of Transfinite Induction 

2.3 Well Ordering set and ordinalities 

2.4 Algebra of Ordinalities 

2.5 Zorn‘s Lemma 

2.6 Summary 

2.7 Keyword 

2.8 Exercise  

2.8 Answer for Check in Progress 

2.10  Suggestion Reading And Reference 

2.0 OBJECTIVE 
 

 Here after study this unit we are able to know ordered structure 

 Learn minimal uncountable well-ordered set 

 Learn algebra of ordinalities 

 Learn Zorn‘s Lemma 

 Learn Ordering Ordinalities 

 

2.1 INTRODUCTION 
 

A well-ordered set is a set with an order such that every its nonempty 

subset has a smallest element. 
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CONSTRUCTING WELL-ORDERED SETS, WELL-ORDERING 

THEOREM 

 

There are several ways of constructing well-ordered sets, for example: 

1. A subset of a well-ordered set is well-ordered. 

2. The product of a finite number of well-ordered sets can be well-

ordered (in the dictionary order, for example). 

3. The union of an arbitrary collection of disjoint well-ordered sets 

indexed by a well-ordered set can be well-ordered (compare first 

indexes, then elements). 

4. Every nonempty finite ordered set has the order type of a section 

of Z+ , so is well-ordered. 

Further, assuming the axiom of choice, every set can be well-ordered. 

2.2 WELL-ORDERING THEOREM 
 

 (Well-Ordering Theorem) For every set there is an order on it that is a 

well-ordering. 

This theorem was proved by Zermelo in 1904, and it startled the 

mathematical world. There was considerable debate as to the correctness 

of the proof... When the proof was analyzed closely, the only point at 

which it was found that there might be some question was a construction 

involving an infinite number of arbitrary choices, that is, a construction 

involving — the choice axiom. Some mathematicians rejected the choice 

axiom as a result, and for many years a legitimate question about a new 

theorem was: Does its proof involve the choice axiom or not?.. Present-

day mathematicians, by and large, do not have such qualms. They accept 

the axiom of choice as a reasonable assumption about set theory, and 

they accept the well-ordering theorem along with it. 

In fact, neither accepting nor rejecting the axiom of choice leads to a 

contradiction. This is purely a matter of choice — which math universe 

is more suitable for the current purposes. 
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 The axiom of choice is equivalent to the well-ordering theorem, 

see Supplementary Exercises. 

 A weaker result is of primary interest: there exists an uncountable 

well-ordered set. 

EXAMPLES 
 

Minimal uncountable well-ordered set 

A section Sα of a well-ordered set is defined by Sα={x|x<α} . 

2.2.1 Minimal uncountable Well-Ordered set:  
An uncountable well-ordered set SΩ every section of which is countable. 

There exists such a set, and its order type is uniquely determined by the 

definition. SΩ∪{Ω} is denoted by S¯¯¯Ω . 

The proof of the existence of SΩ uses the assumption that there exists an 

uncountable well-ordered set. 

 Every countable subset of SΩ has an upper bound. 

 SΩ has no largest element. 

 Every element of SΩ has an immediate successor. 

 There are uncountably many elements in SΩ having no 

immediate predecessor. 

Antidictionary order 

Let A⊂(Z+)ω be the set of all sequences that are eventually 1 . Then, 

the antidictionary order, which prescribes to compare sequences ―from 

right to left‖, i.e. by the last element in which the sequences differ, is a 

well-ordering on A . 

FACTS 

Let A be an ordered set. 

 If A is well-ordered, then it has the least upper bound property. 

 If A is well-ordered, then every a∈A except for the largest (if 

exists) has an immediate successor. 

 A is not well-ordered iff it has a countable subset having the 

same order type as Z− . 

o A is well-ordered iff every countable subset of A is well-

ordered. 



                                                                                                                                                                     Notes 

33 

 

2.2.2 Principle of Transfinite Induction & General 

Principle of Recursive  
 

The Principle of Transfinite Induction. Let A be a well-ordered 

set. B⊂A is called inductive if for every α∈A , Sα⊂B implies α∈B . 

If B is inductive, then B=A (compare to the strong induction principle, 

Section 4). 

The General Principle of Recursive Definition. (see Supplementary 

Exercises) Let A be a well-ordered set and B be a set. Further, let F be 

the set of all functions from all sections of A to B , and ρ:F→B be a 

recursive rule. Then, there exists a unique function h such that 

for α∈A : h(α)=ρ(h|Sα) (compare to the principle of recursive definition, 

Section 8). 

CARDINALITY 

For every two sets A and B either they have the same cardinality, or one 

has the cardinality greater than the other (assuming the well-ordering 

theorem). 

 Indeed, either there is a surjection from A onto B , implying there 

is an injection from B into A , or there is no surjection, and we 

can well-order the sets, and by the general principle of recursive 

definition define an injective 

function h from A to B using ρ(f:Sα→B)=smallest[B−f(Sα)] , in 

which case h(α)=smallest[B−h(Sα)] . 

 

2.3 WELL-ORDERED SETS AND 

ORDINALITIES.  
 

Exercise 3.1: Show that for a linearly ordered set X, TFAE: (i) X 

satisfies the descending chain condition: there are no infinite strictly 

descending sequences x1 > x2 > . . . in X. (ii) X is well-ordered. We need 

the notion of ―equivalence‖ of   well-ordered sets. A mapping f : S → T 
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between partially ordered sets is order preserving (or an order 

homomorphism) if s1 ≤ s2 in S implies f(s1) ≤ f(s2) in T.  

 

 

Exercise 3.2 : Let f : S → T and g : T → U be order homomorphisms 

of partially ordered sets. a) Show that g ◦ f : S → U is an order 

homomorphism.  

b) Note that the identity map from a partially ordered set to itself is an 

order homomorphism. (It follows that there is a category whose objects 

are partially ordered sets and whose morphisms are order 

homomorphisms.) An order isomorphism between posets is a mapping f 

which is order preserving, bijective, and whose inverse f −1 is order 

preserving. (This is the general – i.e., categorical – definition of 

isomorphism of structures.) 

 Exercise 3.3: Give an example of an order preserving bijection f such 

that f −1 is not order preserving. However:  

Lemma 1. An order-preserving bijection whose domain is a totally 

ordered set is an order isomorphism.  

Exercise 3.4: Prove Lemma 1. Lemma 2. (Rigidity Lemma) Let S and 

T be well-ordered sets and f1, f2 : S → T two order isomorphisms. Then 

f1 = f2. Proof: Let f1 and f2 be two order isomorphisms between the 

well-ordered sets S and T, which we may certainly assume are 

nonempty. Consider S2, the set of elements s of S such that f1(s)  = f2(s), 

and let S1 = S \ S2. Since the least element of S must get mapped to the 

least element of T by any order-preserving map, S1 is nonempty; put T1 

= f1(S1) = f2(S1). Supposing that S2 is nonempty, let s2 be its least 

element. Then f1(s2) and f2(s2) are both characterized by being the least 

element of T \ T1, so they must be equal, a contradiction. 

 Exercise 3.5: Let S be a partially ordered set.  
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a) Show that the order isomorphisms f : S → S form a group, the order 

automorphism group Aut(S) of S. (The same holds for any object in any 

category.)  

b) Notice that Lemma 2 implies that the automorphism group of a well-

ordered set is the trivial group.1 

 c) Suppose S is linearly ordered and f is an order automorphism of S 

such that for some positive integer n we have f n = IdS, the identity map. 

Show that f = IdS. (Thus the automorphism group of a linearly ordered 

set is torsionfree.)  

d) For any infinite cardinality κ, find a linearly ordered set S with | 

Aut(S)| ≥ κ. Can we always ensure equality? 

 e)** Show that every group G is (isomorphic to) the automorphism 

group of some partially ordered set.  

Let us define an ordinality to be an order-isomorphism class of well-

ordered sets, and write o(X) for the order-isomorphism class of X. The 

intentionally graceless terminology will be cleaned up later on. Since 

two-order isomorphic sets are equipotent, we can associate to every 

ordinality α an ―underlying‖ cardinality |α|: |o(X)| = |X|. It is natural to 

expect that the classification of ordinalities will be somewhat richer than 

the classification of cardinalities – in general, endowing a set with extra 

structure leads to a richer classification – but the reader new to the 

subject may be (we hope, pleasantly) surprised at how much richer the 

theory becomes. 

 From the perspective of forming ―isomorphism classes‖ (a notion the 

ontological details of which we have not found it profitable to investigate 

too closely) ordinalities have a distinct advantage over cardinalities: 

according to the Rigidity Lemma, any two representatives of the same 

ordinality are uniquely (hence canonically!) isomorphic. This in turn 

raises the hope that we can write down a canonical representative of each 

ordinality. This hope has indeed been realized, by von Neumann, as we 

shall see later on: the canonical representatives will be called ―ordinals.‖ 

While we are alluding to later developments, let us mention that just as 

we can associate a cardinality to each ordinality, we can also – and this is 
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much more profound – associate an ordinality o(κ) to each cardinality κ. 

This assignment is one-to-one, and this allows us to give a canonical 

representative to each cardinality, a ―cardinal.‖ At least at the current 

level of discussion, there is no purely mathematical advantage to the 

passage from cardinalities to cardinals, but it has a 1One says that a 

structure is rigid if it has no nontrivial automorphisms. striking 

ontological2 consequence, namely that, up to isomorphism, we may 

develop all of set theory in the context of ―pure sets‖, i.e., sets whose 

elements (and whose elements‘ elements, and . . .) are themselves sets. 

But first let us give some basic examples of ordinalities and ways to 

construct new ordinalities from preexisting ones.  

2.4 ALGEBRA OF ORDINALITIES.  
 

Example 4.1: Trivially the empty set is well-ordered, as is any set of 

cardinality one. These sets, and only these sets, have unique well-

orderings.  

Example 4.2: Our ―standard‖ example [n] of the cardinality n comes 

with a well-ordering. Moreover, on a finite set, the concepts of well-

ordering and linear ordering coincide, and it is clear that there is up to 

order isomorphism a unique linear ordering on [n]. Informally, given any 

two orderings on an n element set, we define an order-preserving 

bijection by pairing up the least elements, then the second-least elements, 

and so forth. (For a formal proof, use induction.)  

Example 4.3: The usual ordering on N is a well-ordering. Notice that 

this is isomorphic to the ordering on {n ∈ Z | n ≥ n0} for any n0 ∈ Z. As 

is traditional, we write ω for the ordinality of N. Exercise 1.2.4: For any 

ordering ≤ on a set X, we have the opposite ordering ≤′ , defined by x ≤′ 

y iff y ≤ x. a) If ≤ is a linear ordering, so is ≤′ . b) If both ≤ and ≤′ are 

well-orderings, then X is finite. For a partially ordered set X, we can 

define a new partially ordered set X+ := X ∪ {∞} by adjoining some new 

element ∞ and decreeing x ≤ ∞ for all x ∈ X. 

 Proposition 3. If X is well-ordered, so is X+.  
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Proof: Let Y be a nonempty subset of X+. Certainly there is a least 

element if |Y | = 1; otherwise, Y contains an element other than ∞, so that 

Y ∩X is nonempty, and its least element will be the least element of Y .  

If X and Y are order-isomorphic, so too are X+ and Y +, so the passage 

from X to X+ may be viewed as an operation on ordinalities. We denote 

o(X+) by o(X) + 1, the successor ordinality of o(X).  

Note that all the finite ordinalities are formed from the empty ordinality 

0 by iterated successorship. However, not every ordinality is of the form 

o ′ + 1, e.g. ω is clearly not: it lacks a maximal element. (On the other 

hand, it is obtained from all the finite ordinalities in a way that we will 

come back to shortly.) We will say that an ordinality o is a successor 

ordinality if it is of the form o ′ + 1 for some ordinality o ′ and a limit 

ordinality otherwise. Thus 0 and ω are limit ordinals. 2 I restrain myself 

from writing ―ontological‖ (i.e., with quotation marks), being like most 

contemporary mathematicians alarmed by statements about the reality of 

mathematical objects.  

Example 4.4: The successor operation allows us to construct from ω 

the new ordinals ω + 1, ω + 2 := (ω + 1) + 1, and for all n ∈ Z +, ω + n := 

(ω + (n − 1)) + 1: these are all distinct ordinals. Definition: For partially 

ordered sets (S1, ≤1) and (S2, ≤2), we define S1 + S2 to be the set S1 ⨿ 

S2 with s ≤ t if either of the following holds: (i) For i = 1 or 2, s and t are 

both in Si and s ≤i t; (ii) s ∈ S1 and s ∈ S2. Informally, we may think of 

S1 + S2 as ―S1 followed by S2.‖  

Proposition 4. If S1 and S2 are linearly ordered (resp. well-ordered), 

so is S1+S2 

. Exercise 4.5: Prove Proposition 4. 

 Again the operation is well-defined on ordinalities, so we may speak of 

the ordinal sum o+o ′ . By taking S2 = [1], we recover the successor 

ordinality: o+ [1] = o+ 1.  

Example 4.6: The ordinality 2ω := ω + ω is the class of a well-ordered 

set which contains one copy of the natural numbers followed by another. 
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Proceeding inductively, we have nω := (n − 1)ω + ω, with a similar 

description.  

Tournant Dangereuse: We can also form the ordinal sum 1 + ω, 

which amounts to adjoining to the natural numbers a smallest element. 

But this is still orderisomorphic to the natural numbers: 1 + ω = ω. In 

fact the identity 1 + o = o holds for every infinite ordinality (as will be 

clear later on). In particular 1 + ω  = ω + 1, so beware: the ordinal sum is 

not commutative! (To my knowledge it is the only non-commutative 

operation in all of mathematics which is invariably denoted by ―+‖.) It is 

however immediately seen to be associative.  

The notation 2ω suggests that we should have an ordinal product, and 

indeed we do:  

Definition: For posets (S1, ≤1) and (S2, ≤2) we define the 

lexicographic product to be the Cartesian product S1 × S2 endowed with 

the relation (s1, s2) ≤ (t1, t2) if(f) either s1 ≤ t1 or s1 = t1 and s2 ≤ t2. If 

the reasoning behind the nomenclature is unclear, I suggest you look up 

―lexicographic‖ in the dictionary.3 Proposition 5. If S1 and S2 are 

linearly ordered (resp. well-ordered), so is S1×S2.  

 

Check in Progress-I 

Q. 1 State Well Ordered Set. 

Solution 

………………………………………………………………………… 

………………………………………………………………………… 

………………………………………………………………………… 

………………………………………………………………………… 

Q. 2 Define Ordanilities . 

Solution 

………………………………………………………………………… 
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………………………………………………………………………… 

…………………………………………………………………………… 

………………………………………………………………………… 

Exercise 4.7: Prove Proposition 5. 

 As usual this is well-defined on ordinalities so leads to the ordinal 

product o · o ′ .  

Example 4.8: For any well-ordered set X, [2]·X gives us one copy 

{(1, x) | x ∈ X} followed by another copy {(2, x) | x ∈ X}, so we have a 

natural isomorphism of [2] · X with X + X and hence 2 · o = o + o. 

(Similarly for 3o and so forth.) This time we should be prepared for the 

failure of commutativity: ω · n is isomorphic to ω. This allows us to 

write down ω 2 := ω × ω, which we visualize by starting with the 

positive integers and then ―blowing up‖ each positive integer to give a 

whole order isomorphic copy of the positive integers again. Repeating 

this operation gives ω 3 = ω 2 ·ω, and so forth. Altogether this allows us 

to write down ordinalities of the form P(ω) = anω n +. . .+a1ω +a0 with 

ai ∈ N, i.e., polynomials in ω with natural number coefficients. It is in 

fact the case that (i) distinct polynomials P  = Q ∈ N[T] give rise to 

distinct ordinalities P(ω)  = Q(ω); and (ii) any ordinality formed from [n] 

and ω by finitely many sums and products is equal to some P(ω) – even 

when we add/multiply in ―the wrong order‖, e.g. ω ∗ 7 ∗ ω 2 ∗ 4 + ω ∗ 3 

+ 11 = ω 3 + ω + 11 – but we will wait until we know more about the 

ordering of ordinalities to try to establish these facts.  

Example 4.9: Let α1 = o(X1), . . . , αn = o(Xn) be ordinalities.  

a) Show that α1 × (α2 × α3) and (α1 × α2) × α3 are each order 

isomorphic to the set X1 × X2 × X3 endowed with the ordering (x1, x2, 

x3) ≤ (y1, y2, y3) if x1 < y1 or (x1 = y1 and (x2 < y2 or (x2 = y2 and x3 

≤ y3))). In particular ordinal multiplication is associative.  

b) Give an explicit definition of the product well-ordering on X1×. . 

.×Xn, another ―lexicographic ordering.‖ 
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 In fact, we also have a way to exponentiate ordinalities: let α = o(X) and 

β = o(Y ). Then by α β we mean the order isomorphism class of the set Z 

= Z(Y, X) of all functions f : Y → X with f(y) = 0X (0X denotes the 

minimal element of X) for all but finitely many y ∈ Y , ordered by f1 ≤ 

f2 if f1 = f2 or, for the greatest element y ∈ Y such that f1(y)  = f2(y) we 

have f1(y) < f2(y).  

Some helpful terminology: one has the zero function, which is 0 for all 

values. For every other f ∈ W, we define its degree ydeg to be the largest 

y ∈ Y such that f(y)  = 0 and its leading coefficient xl := f(ydeg).  

Proposition 6. For ordinalities α and β, α β is an ordinality.  

Proof: Let Z be the set of finitely nonzero functions f : Y → X as above, 

and let W ⊂ Z be a nonempty subset. We may assume 0 is not in W, 

since the zero function is the minimal element of all of Z. Thus the set of 

degrees of all elements of W is nonempty, and we may choose an 

element of minimal degree y1; moreover, among all elements of minimal 

degree we may choose one with minimal leading coefficient x1, say f1. 

Suppose f1 is not the minimal element of W, i.e., there exists f ′ ∈ W2 

with f ′ < f1. Any such f ′ has the same degree and leading coefficient as 

f1, so the last value y ′ at which f ′ and f1 differ must be less than y1. 

Since f1 is nonzero at all such y ′ and f1 is finitely nonzero, the set of all 

such y ′ is finite and thus has a maximal element y2. Among all f ′ with f 

′ (y2) < f(y2) and f ′ (y) = f(y) for all y > y2, choose one with x2 = f ′ 

(y2) minimal and call it f2. If f2 is not minimal, we may continue in this 

way, and indeed get a sequence of elements f1 > f2 > f3 . . . as well as a 

descending chain y1 > y2 > . . .. Since Y is well-ordered, this descending 

chain must terminate at some point, meaning that at some point we find a 

minimal element fn of W.  

Example 4.10: The ordinality ω ω is the set of all finitely nonzero 

functions f : N → N. At least formally, we can identify such functions as 

polynomials in ω with N-coefficients: Pf (ω) = ∑ n∈N f(n)ω n. The well-

ordering makes Pf < Pg if the at the largest n for which f(n)  = g(n) we 

have f(n) < g(n), e.g. 6 PETE L. CLARK ω 3 + 2ω 2 + 1 > ω3 + ω 2 + ω 

+ 100. It is hard to ignore the following observation: ω ω puts a natural 
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well-ordering relation on all the ordinalities we had already defined. This 

makes us look back and see that the same seems to be the case for all 

ordinalities: e.g. ω itself is order isomorphic to the set of all the finite 

ordinalities [n] with the obvious order relation between them. Now that 

we see the suggested order relation on the ordinalities of the form P(ω) 

one can check that this is the case for them as well: e.g. ω 2 can be 

realized as the set of all linear polynomials {aω + b | a, b ∈ N}. This 

suggests the following line of inquiry:  

(i) Define a natural ordering on ordinalities (as we did for 

cardinalities).  

(ii) (ii) Show that this ordering well-orders any set of ordinalities. 

 Exercise 4.11: Let α and β be ordinalities.  

a) Show that 0β = 0, 1β = 1, α 0 = 1, α 1 = α.  

b) Show that the correspondence between finite ordinals and natural 

numbers respects exponentiation.  

c) For an ordinal α, the symbol α n now has two possible meanings: 

exponentiation and iterated multiplication. Show that the two ordinalities 

are equal. (The proof requires you to surmount a small left-to-right 

lexicographic difficulty.) In particular |α n| = |α| n = |α|.  

d) For any infinite ordinal β, show that |α β | = max(|α|, |β|) 

Tournant dangereuse: In particular, it is generally not the case that 

|α β | = |α| |β| : e.g. 2ω and ω ω are both countable ordinalities. In fact, we 

have not yet seen any uncountable well-ordered sets, and one cannot 

construct an uncountable ordinal from ω by any finite iteration of the 

ordinal operations we have described (nor by a countable iteration either, 

although we have not yet made formal sense of that). This leads us to 

wonder: are there any uncountable ordinalities? 

5  Ordering ordinalities. Let S1 and S2 be two well-ordered sets. In 

analogy with our operation ≤ on sets, it would seem natural to define S1 

≤ S2 if there exists an order-preserving injection S1 → S2. This gives a 

relation ≤ on ordinalities which is clearly symmetric and transitive.  
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However, this is not the most useful definition of ≤ for well-ordered sets, 

since it gives up the rigidity property. In particular, recall Dedekind‘s 

characterization of infinite sets as those which are in bijection with a 

proper subset of themselves, or, equivalently, those which inject into a 

proper subset of themselves. With the above definition, this will still 

occur for infinite ordinalities: for instance, we can inject ω properly into 

itself just by taking N → N, n 7→ n + 1. Even if we require the least 

elements to be preserved, then we can still inject N into any infinite 

subset of itself containing 0. 

 So as a sort of mild deus ex machina we will work with a more 

sophisticated order relation. First, for a linearly ordered set S and s ∈ S, 

we define 

I(s) = {t ∈ S | t < s}, 

 an initial segment of S. Note that every initial segment is a proper 

subset. Let us also define 

I[s] = {t ∈ S | t ≤ s}. 

Now, given linearly ordered sets S and T, we define S < T if there exists 

an order-preserving embedding f : S → T such that f(S) is an initial 

segment of T (say, an initial embedding). We define S ≤ T if S < T or S 

∼= T.  

Exercise 5.1: Let f : S1 → S2 and g : T1 → T2 be order isomorphisms 

of linearly ordered sets. a) Suppose s ∈ S1. Show that f(I(s)) = I(f(s)) and 

f(I[s])) = I(f[s]). b) Suppose that S1 < T1 (resp. S1 ≤ T1). Show that S2 < 

T2) (resp. S2 ≤ T2). c) Deduce that < and ≤ give well-defined relations 

on any set F of ordinalities.  

Exercise 5.2: a) Show that if i : X → Y and j : Y → Z are initial 

embeddings of linearly ordered sets, then j ◦ i : X → Z is an initial 

embedding. b) Deduce that the relation < on any set of ordinalities is 

transitive. 

 Definition: In a partially ordered set X, a subset Z is an order ideal if 

for all z ∈ Z and x ∈ X, if x < z then x ∈ Z. For example, the empty set 
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and X itself are always order ideals. We say that X is an improper order 

ideal of itself, and all other order ideals are proper. For instance, I[s] is 

an order ideal, which may or may not be an initial segment.  

Lemma 7. (“Principal ideal lemma”) Any proper order ideal in a 

well-ordered set is an initial segment.  

Proof: Let Z be a proper order ideal in X, and s the least element of X \ 

Z. Then a moment‘s thought gives Z = I(s).  

The following is a key result:  

Theorem 8. (Ordinal trichotomy) For any two ordinalities α = 

o(X) and β = o(Y ), exactly one of the following holds: α < β, α = β, β < 

α.  

Corollary 9. Any set of ordinalities is linearly ordered 

under ≤.  

Exercise 5.3: Deduce Corollary 9 from Theorem 8. Is the Corollary 

equivalent to the Theorem?  

Proof of Theorem 8: Part of the assertion is that no well-ordered set 

X is order isomorphic to any initial segment I(s) in X (we would then 

have both o(I(s)) < o(X) and o(I(s)) = o(X)); let us establish this first. 

Suppose to the contrary that   : X → X is an order embedding whose 

image is an initial segment I(s). Then the set of x for which  (x)  = x is 

nonempty (otherwise   would be the identity map, and no linearly 

ordered set is equal to any of its initial segments), so let x be the least 

such element. Then, since   restricted to I(x) is the identity map,  (I(x)) = 

I(x), so we cannot have  (x) < x – that would contradict the injectivity of 

  – so it must be the case that  (x) > x. But since  (X) is an initial 

segment, this means that x is in the image of  , which is seen to be 

impossible. Now if α < β and β < α then we have initial embeddings i : X 

→ Y and j : Y → X. By Exercise 1.3.2 their composite j ◦ i : X → X is 

an initial embedding, which we have just seen is impossible.  

It remains to show that if α  = β there is either initial embedding from X 

to Y or vice versa. We may assume that X is nonempty. Let us try to 
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build an initial embedding from X into Y . A little thought convinces us 

that we have no choices to make: suppose we have already defined an 

initial embedding f on a segment I(s) of X. Then we must define f(s) to 

be the least element of Y \ f(I(s)), and we can define it this way exactly 

when f(I(s))  = Y . If however f(I(s)) = Y , then we see that f −1 gives an 

initial embedding from Y to X. So assume Y is not isomorphic to an 

initial segment of X, and let Z be the set of x in X such that there exists 

an initial embedding from I(z) to Y . It is immediate to see that Z is an 

order ideal, so by Lemma 7 we have either Z = I(x) or Z = X. In the 

former case we have an initial embedding from I(z) to Y , and as above, 

the only we could not extend it to x is if it is surjective, and then we are 

done as above. So we can extend the initial embedding to I[x], which – 

again by Lemma 7 is either an initial segment (in which case we have a 

contradiction) or I[x] = X, in which case we are done. The last case is 

that Z = X has no maximal element, but then we have X = ∪ x∈X I(x) 

and a uniquely defined initial embedding   on each I(x). So altogether we 

have a map on all of X whose image f(X), as a union of initial segments, 

is an order ideal. Applying Lemma 7 yet again, we either have f(X) = Y 

– in which case f is an order isomorphism – or f(X) is an initial segment 

of Y , in which case X < Y : done.  

Check In Progress-II 

Q. 1 State Principal Ideal Domain  

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define Odering Odernilities.  

Solution : 

…………………………………………………………………………… 
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…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

2.6 ZORN'S LEMMA 
 

Introduction: Zorn‘s lemma is a result in set theory that appears in 

proofs of some non-constructive existence theorems throughout 

mathematics. We will state Zorn‘s lemma below and use it in later 

sections to prove some results in linear algebra, ring theory, group 

theory, and topology. In an appendix, we will give an application to 

metric spaces. The statement of Zorn‘s lemma is not intuitive, and some 

of the terminology in it may be unfamiliar, but after reading through the 

explanation of Zorn‘s lemma and then the proofs that use it you should 

be more comfortable with how it can be applied.  

Theorem 1.1 (Zorn’s lemma). Let S be a partially 

ordered set. If every totally ordered subset of S has an upper bound, then 

S contains a maximal element. 

 To understand Theorem 1.1, we need to know four terms: partially 

ordered set, totally ordered subset, upper bound, and maximal element. A 

partial ordering on a (nonempty) set S is a binary relation on S, denoted 

≤, which satisfies the following properties:  

• for all s ∈ S, s ≤ s, 

• if s ≤ s 0 and s 0 ≤ s then s = s 0 , 

• if s ≤ s 0 and s 0 ≤ s 00 then s ≤ s 00 . 

When we fix a partial ordering ≤ on S, we refer to S (or, more precisely, 

to the pair (S, ≤)) as a partially ordered set. It is important to notice that 

we do not assume all pairs of elements in S are comparable under ≤: for 

some s and s 0 we may have neither s ≤ s 0 nor s 0 ≤ s. If all pairs of 
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elements can be compared (that is, for all s and s 0 in S either s ≤ s 0 or s 

0 ≤ s) then we say S is totally ordered with respect to ≤.  

Example 6.1. The usual ordering relation ≤ on R or on Z + is a partial 

ordering of these sets. In fact it is a total ordering on either set. This 

ordering on Z + is the basis for proofs by induction.  

Example 6.2. On Z +, declare a ≤ b if a | b. This partial ordering on Z 

+ is different from the one in Example 1.2 and is called ordering by 

divisibility. It is one of the central relations in number theory. (Proofs 

about Z + in number theory sometimes work not by induction, but by 

starting on primes, then extending to prime powers, and then extending 

to all positive integers using prime factorization. Such proofs view Z + 

through the divisibility relation rather than through the usual ordering 

relation.) Unlike the ordering on Z + in  

Example 6.3, Z + is not totally ordered by divisibility: most pairs of 

integers are not comparable under the divisibility relation. For instance, 3 

doesn‘t divide 5 and 5 doesn‘t divide 3. The subset {1, 2, 4, 8, 16, . . . } 

of powers of 2 is totally ordered under divisibility. 

Example 6.4. Let S be the set of all subgroups of a given group G. For 

H, K ∈ S (that is, H and K are subgroups of G), declare H ≤ K if H is a 

subset of K. This is a partial ordering, called ordering by inclusion. It is 

not a total ordering: for most subgroups H and K neither H ⊂ K nor K ⊂ 

H. One can similarly partially order the subspaces of a vector space or 

the ideals (or subrings or all subsets) of a commutative ring by inclusion.  

Example 6.5. On Z +, declare a ≤ b if b | a. Here one positive integer 

is ―larger‖ than another if it is a factor. This is called ordering by reverse  

divisibility.  

Example 6.6. On the set of subgroups of a group G, declare subgroups 

H and K to satisfy H ≤ K if K ⊂ H. This is a partial ordering on the 

subgroups of G, called ordering by reverse inclusion. 

 In case you think ordering by reverse inclusion seems weird, let‘s take a 

look again at Example 1.3. There positive integers are ordered by 



                                                                                                                                                                     Notes 

47 

divisibility, and nothing seems ―backwards.‖ But let‘s associate to each a 

∈ Z + the subgroup aZ of Z. Every nonzero subgroup of Z has the form 

aZ for a unique positive integer a, aZ = bZ if and only if a = b (both a 

and b are positive), and a | b if and only if bZ ⊂ aZ. For instance, 4 | 12 

and 12Z ⊂ 4Z. Therefore the ordering by divisibility on Z + is essentially 

the same as ordering by reverse inclusion on nonzero subgroups of Z. 

Partial ordering by reverse inclusion is used in the construction of 

completions of groups and rings.  

Example 6.7. Let A and B be sets. Let S be the set of functions 

defined on some subset of A with values in B. The subset can vary with 

the function. That is, S is the set of pairs (X, f) where X ⊂ A and f : X → 

B. Two elements (X, f) and (Y, g) in S are equal when X = Y and f(x) = 

g(x) for all x ∈ X.  

We can partially order S by declaring (X, f) ≤ (Y, g) when X ⊂ Y and 

g|X = f. This means g is an extension of f to a larger subset of A. Let‘s 

check the second property of a partial ordering: if (X, f) ≤ (Y, g) and (Y, 

g) ≤ (X, f) then X ⊂ Y and Y ⊂ X, so X = Y . Then the condition g|X = f 

means g = f as functions on their common domain, so (X, f) = (Y, g).  

Example 6.8. If S is a partially ordered set for the relation ≤ and T ⊂ 

S, then the relation ≤ provides a partial ordering on T. Thus T is a new 

partially ordered set under ≤. For instance, the partial ordering by 

inclusion on the subgroups of a group restricts to a partial ordering on the 

cyclic subgroups of a group. 

In these examples, only Example 1.2 is totally ordered. This is typical: 

most naturally occurring partial orderings are not total orderings. 

However (and this is important) a partially ordered set can have many 

subsets that are totally ordered. As a dumb example, every one-element 

subset of a partially ordered set is totally ordered. A more interesting 

illustration was at the end of Example 1.3 with the powers of 2 inside Z 

+ under divisibility. As another example, if we partially order the 

subspaces of a vector space V by inclusion then any tower of subspaces 

W1 ⊂ W2 ⊂ W3 ⊂ · · · 
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where each subspace is a proper subset of the next one is a totally 

ordered subset of V . Here is a result about totally ordered subsets that 

will be useful at a few points later.  

Lemma 1.9. Let S be a partially ordered set. If {s1, . . . , sn} is a finite 

totally ordered subset of S then there is an si such that sj ≤ si for all j = 1, 

. . . , n.  

Proof. The si ‘s are all comparable to each other; that‘s what being 

totally ordered means. Since we‘re dealing with a finite set of pairwise 

comparable elements, there will be one that is greater than or equal to 

them all in the partial ordering on S. The reader can formalize this with a 

proof by induction on n, or think about the bubble sort algorithm  

An upper bound on a subset T of a partially ordered set S is an s ∈ S such 

that t ≤ s for all t ∈ T. When we say T has an upper bound in S, we do 

not assume the upper bound is in T itself; it is just in S.  

 

Example 6.10. In R with its natural ordering, the subset Z has no 

upper bound while the subset of negative real numbers has the upper 

bound 0 (or any positive real). No upper bound on the negative real 

numbers is a negative real number.  

Example 6.11. In the proper subgroups of Z ordered by inclusion, an 

upper bound on {4Z, 6Z, 8Z} is 2Z since 4Z, 6Z, and 8Z all consist 

entirely of even numbers. (Note 4Z ⊂ 2Z, not 2Z ⊂ 4Z.)  

A maximal element m of a partially ordered set S is an element that is 

not below any element to which it is comparable: for all s ∈ S to which 

m is comparable, s ≤ m. Equivalently, m is maximal when the only s ∈ S 

satisfying m ≤ s is s = m. This does not mean s ≤ m for all s in S since we 

don‘t insist that maximal elements are actually comparable to every 

element of S. A partially ordered set could have many maximal elements. 

 Example 6.12. If we partially order Z + by reverse divisibility (so a ≤ 

b means b | a), the number 1 is a maximal element. In fact 1 is the only 

maximal element. This is not a good example because 1 is comparable to 
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everything in this relation, which is not a typical feature of maximal 

elements.  

Example 6.13. Consider the positive integers greater than 1 with the 

reverse divisibility ordering: a ≤ b when b | a. The maximal elements 

here are the positive integers with no positive factor greater than 1 except 

themselves. These are the prime numbers, so the primes are the maximal 

elements for the reverse divisibility relation on {2, 3, 4, 5, 6, . . . } 

       Equivalently, if we partially order the proper subgroups of Z by 

inclusion then the maximal elements are pZ for prime numbers p. 

      We now return to the statement of Zorn‘s lemma:  

                    If every totally ordered subset of a partially ordered set S has 

an upper bound, then S contains a maximal element.  

           All the terms being used here have now been defined.1 Of course 

this doesn‘t mean the statement should be any clearer!  

Zorn‘s lemma is not intuitive, but it turns out to be logically equivalent 

to more readily appreciated statements from set theory like the Axiom of 

Choice (which says the Cartesian product of any family of nonempty sets 

is nonempty). In the set theory appendix to [13], Zorn‘s lemma is derived 

from the Axiom of Choice. A proof of the equivalence between Zorn‘s 

lemma and the Axiom of Choice is given in the appendix to [16]. The 

reason for calling Zorn‘s lemma a lemma rather than an axiom is purely 

historical. Zorn‘s lemma is 1The hypotheses refer to all totally ordered 

subsets, and a totally ordered subset might be uncountable. Therefore it 

is a bad idea to write about ―totally ordered sequences,‖ since the label 

―sequence‖ is often understood to refer to a countably indexed set. Just 

use the label ―totally ordered subset.‖ that means a total ordering in 

which every nonempty subset has a least element), but do not confuse the 

totally ordered subsets in the hypotheses of Zorn‘s lemma with 

wellorderings on the whole set. They are different concepts, and you 

should never invoke the Well-Ordering Principle in the middle of an 

application of Zorn‘s lemma unless you really want to make bad 

mistakes.  
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                 Zorn‘s lemma provides no mechanism to find a maximal 

element whose existence it asserts. It also says nothing about how many 

maximal elements there are. Usually, as in Example 1.13, there are many 

maximal elements.  

                  In a partially ordered set S we can speak about minimal 

elements just as much as maximal elements: m ∈ S is called minimal if 

m ≤ s for all s ∈ S to which m is comparable. Zorn‘s lemma can be stated 

in terms of minimal elements: if any totally ordered subset of a partially 

ordered set S has a lower bound in S then S has a minimal element. 

There really is no need to use this formulation, in practice, since by 

reversing the meaning of the partial ordering (that is, using the reverse 

ordering) lower bounds become upper bounds and minimal elements 

become maximal elements.  

             The applications of Zorn‘s lemma here are mostly to algebra, but 

it shows up in many other areas. For instance, the most important result 

in functional analysis is the HahnBanach theorem, whose proof uses 

Zorn‘s lemma. Another result from functional analysis, the Krein-

Milman theorem, is proved using Zorn‘s lemma. (The Krein-Milman 

theorem is an example where Zorn‘s lemma is used to prove the 

existence of something that is more naturally a minimal element than a 

maximal element.) In topology, the most important theorem about 

compact spaces is Tychonoff‘s theorem, and it is proved using Zorn‘s 

lemma. When dealing with objects that have a built-in finiteness 

condition (such as finitedimensional vector spaces or finite products of 

spaces X1 × · · · × Xn), Zorn‘s lemma can be avoided by using ordinary 

induction in a suitable way (e.g., inducting on the dimension of a vector 

space). The essential uses of Zorn‘s lemma are for truly infinite objects, 

where one has to make infinitely many choices at once in a rather 

extreme way. 

2.7 SUMMARY  
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We study in this unit well ordering set and Ordinal Trichotomy. We 

study well ordering set and its proposition with some examples. We 

study Partial Order set also.  

 

2.8 KEYWORD 

 

Ordinal trichotomy : A total order (or "totally ordered set," or 

"linearly ordered set") is a set plus a relation on the set (called a total 

order) that satisfies the conditions for a partial order plus an additional 

condition known as the comparability condition. ... Comparability 

Well-Ordering : A well-order (or well-ordering or well-order 

relation) on a set S is a total order on S with the property that every non-

empty subset of S has a least element in this ordering. The set S together 

with the well-order relation is then called a well-ordered set 

Antidictionary : The set of all words of minimal length that 

never appear in a particular  

 

2.9 EXERCISE  
 

Exercise 1: Give an example of an order preserving bijection f such 

that f −1 is not order preserving. 

Exercise 2. Prove Lemma 1. Lemma 2. (Rigidity Lemma) Let S and T 

be well-ordered sets and f1, f2 : S → T two order isomorphisms. Then f1 

= f2. Proof: Let f1 and f2 be two order isomorphisms between the well-

ordered sets S and T, which we may certainly assume are nonempty. 

Consider S2, the set of elements s of S such that f1(s)  = f2(s), and let S1 

= S \ S2. Since the least element of S must get mapped to the least 

element of T by any order-preserving map, S1 is nonempty; put T1 = 

f1(S1) = f2(S1). Supposing that S2 is nonempty, let s2 be its least 
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element. Then f1(s2) and f2(s2) are both characterized by being the least 

element of T \ T1, so they must be equal, a contradiction. 

Example 3: Trivially the empty set is well-ordered, as is any set of 

cardinality one. These sets, and only these sets, have unique well-

orderings.  

Exercise 4: Let α and β be ordinalities.  

a) Show that 0β = 0, 1β = 1, α 0 = 1, α 1 = α.  

b) Show that the correspondence between finite ordinals and natural 

numbers respects exponentiation.  

c) For an ordinal α, the symbol α n now has two possible meanings: 

exponentiation and iterated multiplication. Show that the two ordinalities 

are equal. (The proof requires you to surmount a small left-to-right 

lexicographic difficulty.) In particular |α n| = |α| n = |α|.  

d) For any infinite ordinal β, show that |α β | = max(|α|, |β|) 

2.10 ANSWER FOR CHECK IN 

PROGRESS  

 

Check in Progress-I 

Answer  Q. 1 Check in Section 3 

              Q 2 Check in Section 4 

Check in Progress-II 

Answer  Q. 1 Check in Lemma 7 

              Q 2 Check in Section 4 

2.11 SUGGESTION READING AND 

REFERENCES 
 

[1] B. Banaschewski, A new proof that ―Krull implies Zorn‖, Math. 

Logic Quart. 40 (1994), 478–480.  



                                                                                                                                                                     Notes 

53 

[2] J. L. Bell and F. Jellett, On the relationship between the Boolean 

prime ideal theorem and two principles in functional analysis, Bull. 

Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys. 19 (1971), 191–194.  

[3] J. Bell and D. H. Fremlin, A geometric form of the axiom of choice, 

Fund. Math. 77 (1972), 167–170.  

[4] A. Blass, Injectivity, projectivity, and the axiom of choice, Trans. 

Amer. Math. Soc. 255 (1979), 31–59.  

[5] A. Blass, Existence of bases implies the axiom of choice, pp. 31–33 

in: ―Axiomatic set theory (Boulder, Colo., 1983)‖, Amer. Math. Soc., 

Providence, 1984.  

[6] L. Blumenthal, ―Theory and Applications of Distance Geometry,‖ 

Clarendon Press, Oxford, 1953. 

 [7] D. Dummit and R. Foote, ―Abstract Algebra,‖ 3rd ed., Wiley, New 

York, 2004. 

 [8] J. D. Halpern and A. L´evy, The Boolean prime ideal theorem does 

not imply the axiom of choice, pp. 83–134 in: ―Axiomatic Set Theory 

(Proc. Sympos. Pure Math., Vol. XIII, Part I), Amer. Math. Soc., 

Providence, 1971.  

[9] H. Herrlich, ―Axiom of Choice,‖ Springer-Verlag, Berlin, 2006. 

 [10] W. Hodges, Krull implies Zorn, J. London Math. Soc. 19 (1979), 

285–287. 

 [11] J. Kelley, The Tychonoff product theorem implies the axiom of 

choice, Fund. Math. 37 (1950), 75–76.  

[12] K. Keremedis, Bases for vector spaces over the two-element field 

and the axiom of choice, Proc. Amer. Math. Soc. 124 (1996), 2527–

2531. 

 [13] S. Lang, ―Algebra,‖ 3rd revised ed., Springer, New York, 2002.  

 

 



54 

UNIT 3 ORDINAL AND CARDINAL 

NUMBERS 

STRUCTURE 

3.0 Objective 

3.1 Introduction 

3.2  Cardinal Numbers 

3.1.1Motivation 

3.1.2 Formal Definition 

3.3  Cardinal Arithmetic 

3.3.1 Successor Cardinal 

3.3.2 Cardinal Addition 

3.3.3 Cardinal Subtraction 

3.3.4 Cardinal Multiplication 

3.3.5 Cardinal Division 

3.3.6 Cardinal Exponentiation 

3.3.7 Cardinal Root 

     3.3.8       Cardinal Logarithmic 

3.4. Well Ordering Principal 

      3. 4.1 Well Order Set 

3.5 Ordinal Number 

     3.5.1 Von Neumann definition of ordinals 

     3.5.2 Transfinite Sequence 

     3.5.3 Transfinite Induction 

     3.5.4 Successor and limit Ordinals 

     3.5.5 Indexing Classes of Ordinal 

     3.5.6 Closed Unbounded Sets and Classes 

3.6 Arithmetic of Ordinals 

      3.6.1 Ordinals and cardinals 

      3.6.2 Cofinality 

      3.6.3 Topology and Ordinals 
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      3.6.4 Downward Closed Sets of Ordinals 

3.7 Summary 

3.8. Keyword 

3.9 Exercise  

3.10 Answer For Check in Progress 

3.11 Suggestion Reading And Reference 

3.12 Bibliography 

 

3.0 OBJECTIVE 

* Here we learn cardinal number system 

* after learning this unit we are able to know cardinal arithemetic 

* learn successor of cardinal 

* Learn cardinal arithemetic  

* learn cardinal subtraction, multiplication, division and addition 

 

3.1 INTRODUCTION  

1 Introduction:  A Cardinal Number  is a number that says how 

many of something there are, such as one, two, three, four, five. 

An Ordinal Number  is a number that tells the position of something in 

a list, such as 1st, 2nd, 3rd, 4th, 5th etc. 

Most ordinal numbers end in "th" except for: 

1 one ⇒ first (1st) 

2 two ⇒ second (2nd) 

3 three ⇒ third (3rd) 

 Cardinal   Ordinal 

1 One   1st First 

2 Two   2nd Second 

https://www.mathsisfun.com/numbers/cardinal-ordinal-nominal.html
https://www.mathsisfun.com/numbers/cardinal-ordinal-nominal.html
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3 Three   3rd Third 

4 Four   4th Fourth 

5 Five   5th Fifth 

6 Six   6th Sixth 

7 Seven   7th Seventh 

8 Eight   8th Eighth 

9 Nine   9th Ninth 

10 Ten   10th Tenth 

11 Eleven   11th Eleventh 

12 Twelve   12th Twelfth 

13 Thirteen   13th Thirteenth 

14 Fourteen   14th Fourteenth 

15 Fifteen   15th Fifteenth 

16 Sixteen   16th Sixteenth 

17 Seventeen   17th Seventeenth 

18 Eighteen   18th Eighteenth 

19 Nineteen   19th Nineteenth 

20 Twenty   20th Twentieth 

21 Twenty one   21st Twenty-first 

22 Twenty two   22nd Twenty-second 

23 Twenty three   23rd Twenty-third 

24 Twenty four   24th Twenty-fourth 

25 Twenty five   25th Twenty-fifth 

… …   … … 

30 Thirty   30th Thirtieth 

31 Thirty one   31st Thirty-first 
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32 Thirty two   32nd Thirty-second 

33 Thirty three   33rd Thirty-third 

34 Thirty four   34th Thirty-fourth 

… …   … … 

40 Forty   40th Fortieth 

50 Fifty   50th Fiftieth 

60 Sixty   60th Sixtieth 

70 Seventy   70th Seventieth 

80 Eighty   80th Eightieth 

90 Ninety   90th Ninetieth 

100 One hundred   100th Hundredth 

… …   … … 

1000 One thousand   1000th Thousandth 

 

 

 

 

    

3.2 CARDINAL NUMBERS 

Cardinals for short, are a generalization of the natural numbers used to 

measure the cardinality (size) of sets. The cardinality of a finite set is a 

natural number: the number of elements in the set. 

The transfinite cardinal numbers describe the sizes of infinite sets. 

Cardinality is defined in terms of bijective functions. Two sets have the 

same cardinality if, and only if, there is a one-to-one correspondence 

(bijection) between the elements of the two sets. In the case of finite sets, 

https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Transfinite_number
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Bijective_function
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this agrees with the intuitive notion of size. In the case of infinite sets, 

the behavior is more complex. A fundamental theorem due to Georg 

Cantorshows that it is possible for infinite sets to have different 

cardinalities, and in particular the cardinality of the set of real numbers is 

greater than the cardinality of the set of natural numbers. It is also 

possible for a proper subset of an infinite set to have the same cardinality 

as the original set, something that cannot happen with proper subsets of 

finite sets. 

This sequence starts with the natural numbers including zero (finite 

cardinals), which are followed by the aleph numbers (infinite cardinals 

of well-ordered sets). The aleph numbers are indexed by ordinal 

numbers. Under the assumption of the axiom of choice, this transfinite 

sequence includes every cardinal number. If one rejects that axiom, the 

situation is more complicated, with additional infinite cardinals that are 

not alephs. 

Cardinality is studied for its own sake as part of set theory. It is also a 

tool used in branches of mathematics including model 

theory, combinatorics, abstract algebra, and mathematical analysis. 

In category theory, the cardinal numbers form a skeleton of the category 

of sets. 

3.2.1 Motivation 

In informal use, a cardinal number is what is normally referred to as 

a counting number, provided that 0 is included: 0, 1, 2, .... They may be 

identified with the natural numbers beginning with 0. The counting 

numbers are exactly what can be defined formally as the finite cardinal 

numbers. Infinite cardinals only occur in higher-level mathematics and 

logic. 

More formally, a non-zero number can be used for two purposes: to 

describe the size of a set, or to describe the position of an element in a 

sequence. For finite sets and sequences it is easy to see that these two 

notions coincide, since for every number describing a position in a 

sequence we can construct a set which has exactly the right size, e.g. 3 

describes the position of 'c' in the sequence <'a','b','c','d',...>, and we can 

construct the set {a,b,c} which has 3 elements. However, when dealing 

https://en.wikipedia.org/wiki/Georg_Cantor
https://en.wikipedia.org/wiki/Georg_Cantor
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Proper_subset
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Aleph_number
https://en.wikipedia.org/wiki/Well-ordering
https://en.wikipedia.org/wiki/Ordinal_number
https://en.wikipedia.org/wiki/Ordinal_number
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Transfinite_sequence
https://en.wikipedia.org/wiki/Transfinite_sequence
https://en.wikipedia.org/wiki/Axiom_of_choice#Independence
https://en.wikipedia.org/wiki/Cardinality
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Model_theory
https://en.wikipedia.org/wiki/Model_theory
https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Abstract_algebra
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Skeleton_(category_theory)
https://en.wikipedia.org/wiki/Category_of_sets
https://en.wikipedia.org/wiki/Category_of_sets
https://en.wikipedia.org/wiki/Counting_number
https://en.wikipedia.org/wiki/Natural_numbers
https://en.wikipedia.org/wiki/Finite_set
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with infinite sets it is essential to distinguish between the two — the two 

notions are in fact different for infinite sets. Considering the position 

aspect leads to ordinal numbers, while the size aspect is generalized by 

the cardinal numbers described here. 

The intuition behind the formal definition of cardinal is the construction 

of a notion of the relative size or "bigness" of a set without reference to 

the kind of members which it has. For finite sets this is easy; one simply 

counts the number of elements a set has. In order to compare the sizes of 

larger sets, it is necessary to appeal to more subtle notions. 

A set Y is at least as big as a set X if there is an injective mapping from 

the elements of X to the elements of Y. An injective mapping identifies 

each element of the set X with a unique element of the set Y. This is most 

easily understood by an example; suppose we have the sets X = {1,2,3} 

and Y = {a,b,c,d}, then using this notion of size we would observe that 

there is a mapping: 

1 → a 

2 → b 

3 → c 

which is injective, and hence conclude that Y has cardinality greater than 

or equal to X. Note the element d has no element mapping to it, but this 

is permitted as we only require an injective mapping, and not necessarily 

an injective and onto mapping. The advantage of this notion is that it can 

be extended to infinite sets. 

We can then extend this to an equality-style relation. 

Two sets X and Y are said to have the same cardinality if there exists 

a bijection between X and Y. By the Schroeder–Bernstein theorem, this is 

equivalent to there being both an injective mapping from X to Y and an 

injective mapping from Y to X. We then write |X| = |Y|. The cardinal 

number of X itself is often defined as the least ordinal a with |a| = |X|. 

This is called the von Neumann cardinal assignment; for this definition 

to make sense, it must be proved that every set has the same cardinality 

as some ordinal; this statement is the well-ordering principle. It is 

however possible to discuss the relative cardinality of sets without 

explicitly assigning names to objects. 

https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Ordinal_numbers
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Onto
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Cantor%E2%80%93Bernstein%E2%80%93Schroeder_theorem
https://en.wikipedia.org/wiki/Von_Neumann_cardinal_assignment
https://en.wikipedia.org/wiki/Well-ordering_principle
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The classic example used is that of the infinite hotel paradox, also 

called Hilbert's paradox of the Grand Hotel. Suppose you are an 

innkeeper at a hotel with an infinite number of rooms. The hotel is full, 

and then a new guest arrives. It is possible to fit the extra guest in by 

asking the guest who was in room 1 to move to room 2, the guest in 

room 2 to move to room 3, and so on, leaving room 1 vacant. We can 

explicitly write a segment of this mapping: 

1 → 2 

2 → 3 

3 → 4 

... 

n → n + 1 

... 

In this way we can see that the set {1,2,3,...} has the same cardinality as 

the set {2,3,4,...} since a bijection between the first and the second has 

been shown. This motivates the definition of an infinite set being any set 

which has a proper subset of the same cardinality; in this case {2,3,4,...} 

is a proper subset of {1,2,3,...}. 

When considering these large objects, we might also want to see if the 

notion of counting order coincides with that of cardinal defined above for 

these infinite sets. It happens that it doesn't; by considering the above 

example we can see that if some object "one greater than infinity" exists, 

then it must have the same cardinality as the infinite set we started out 

with. It is possible to use a different formal notion for number, 

called ordinals, based on the ideas of counting and considering each 

number in turn, and we discover that the notions of cardinality and 

ordinality are divergent once we move out of the finite numbers. 

It can be proved that the cardinality of the real numbers is greater than 

that of the natural numbers just described. This can be visualized 

using Cantor's diagonal argument; classic questions of cardinality (for 

instance the continuum hypothesis) are concerned with discovering 

whether there is some cardinal between some pair of other infinite 

cardinals. In more recent times mathematicians have been describing the 

properties of larger and larger cardinals. 

https://en.wikipedia.org/wiki/Hilbert%27s_paradox_of_the_Grand_Hotel
https://en.wikipedia.org/wiki/Ordinal_number
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Continuum_hypothesis


                                                                                                                                                                     Notes 

61 

Since cardinality is such a common concept in mathematics, a variety of 

names are in use. Sameness of cardinality is sometimes referred to 

as equipotence, equipollence, or equinumerosity. It is thus said that 

two sets with the same cardinality are, 

respectively, equipotent, equipollent, or equinumerous. 

 

3.2.2 Formal Definition 

Formally, assuming the axiom of choice, the cardinality of a set X is the 

least ordinal number α such that there is a bijection between X and α. 

This definition is known as the von Neumann cardinal assignment. If the 

axiom of choice is not assumed we need to do something different. The 

oldest definition of the cardinality of a set X (implicit in Cantor and 

explicit in Frege and Principia Mathematica) is as the class [X] of all sets 

that are equinumerous with X. This does not work in ZFC or other 

related systems of axiomatic set theory because if X is non-empty, this 

collection is too large to be a set. In fact, for X ≠ ∅ there is an injection 

from the universe into [X] by mapping a set m to {m} × X and so by 

the axiom of limitation of size, [X] is a proper class. The definition does 

work however in type theory and in New Foundations and related 

systems. However, if we restrict from this class to those equinumerous 

with X that have the least rank, then it will work (this is a trick due 

to Dana Scott:
[2]

 it works because the collection of objects with any 

given rank is a set). 

Formally, the order among cardinal numbers is defined as follows: |X| ≤ 

|Y| means that there exists an injective function from X to Y. The Cantor–

Bernstein–Schroeder theorem states that if |X| ≤ |Y| and |Y| ≤ |X| then |X| = 

|Y|. The axiom of choice is equivalent to the statement that given two 

sets X and Y, either |X| ≤ |Y| or |Y| ≤ |X|.
  

 

A set X is Dedekind-infinite if there exists a proper subset Y of X with |X| 

= |Y|, and Dedekind-finite if such a subset doesn't exist. 

The finite cardinals are just the natural numbers, i.e., a set X is finite if 

and only if |X| = |n| = n for some natural number n. Any other set 

is infinite. Assuming the axiom of choice, it can be proved that the 

Dedekind notions correspond to the standard ones. It can also be proved 

https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Ordinal_number
https://en.wikipedia.org/wiki/Von_Neumann_cardinal_assignment
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https://en.wikipedia.org/wiki/Axiomatic_set_theory
https://en.wikipedia.org/wiki/Axiom_of_limitation_of_size
https://en.wikipedia.org/wiki/Type_theory
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that the cardinal   (aleph null or aleph-0, where aleph is the first letter in 

the Hebrew alphabet, represented  ) of the set of natural numbers is the 

smallest infinite cardinal, i.e. that any infinite set has a subset of 

cardinality   The next larger cardinal is denoted by   and so on. For 

every ordinal α there is a cardinal number   and this list exhausts all 

infinite cardinal numbers. 

 

Check in Progress-I 

Q. 1 Define Cardinal Numbers.  

Solution. ……………………………………………………………….. 

…………………………………………………………………………. 

………………………………………………………………………… 

……………………………………………………………………….. 

Q. 2 What is Cardinal Numbers.  

Solution. ……………………………………………………………….. 

…………………………………………………………………………. 

………………………………………………………………………… 

……………………………………………………………………….. 

 

 

3.3 CARDINAL ARITHMETIC 

We can define arithmetic operations on cardinal numbers that generalize 

the ordinary operations for natural numbers. It can be shown that for 

finite cardinals these operations coincide with the usual operations for 

natural numbers. Furthermore, these operations share many properties 

with ordinary arithmetic. 

3.3.1 Successor Cardinal 

If the axiom of choice holds, then every cardinal κ has a successor κ
+
 > 

κ, and there are no cardinals between κ and its successor. (Without the 

axiom of choice, using Hartogs' theorem, it can be shown that, for any 

https://en.wikipedia.org/wiki/Aleph_null
https://en.wikipedia.org/wiki/Hebrew_alphabet
https://en.wikipedia.org/wiki/Ordinal_number
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Hartogs_number
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cardinal number κ, there is a minimal cardinal κ
+
, such that ) For 

finite cardinals, the successor is simply κ + 1. For infinite cardinals, the 

successor cardinal differs from the successor ordinal. 

3.3.2 Cardinal Addition 

If X and Y are disjoint, addition is given by the union of X and Y. If the 

two sets are not already disjoint, then they can be replaced by disjoint 

sets of the same cardinality, e.g., replace X by X×{0} and Y by Y×{1}.

 

Zero is an additive identity κ + 0 = 0 + κ = κ. 

Addition is associative (κ + μ) + ν = κ + (μ + ν). 

Addition is commutative κ + μ = μ + κ. 

Addition is non-decreasing in both arguments:  

Assuming the axiom of choice, addition of infinite cardinal numbers is 

easy. If either κ or μ is infinite, then  

3.3.3 Cardinal Subtraction 

Assuming the axiom of choice and, given an infinite cardinal ζ and a 

cardinal μ, there exists a cardinal κ such that μ + κ = ζ if and only if μ ≤ 

ζ. It will be unique (and equal to ζ) if and only if μ < ζ. 

3.3.4 Cardinal Multiplication 

The product of cardinals comes from the cartesian product.  

κ·0 = 0·κ = 0. 

κ·μ = 0 → (κ = 0 or μ = 0). 

One is a multiplicative identity κ·1 = 1·κ = κ. 

Multiplication is associative (κ·μ)·ν = κ·(μ·ν). 

Multiplication is commutative κ·μ = μ·κ. 

Multiplication is non-decreasing in both arguments: κ ≤ μ → 

(κ·ν ≤ μ·ν and ν·κ ≤ ν·μ). 

https://en.wikipedia.org/wiki/Successor_ordinal
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Union_(set_theory)
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https://en.wikipedia.org/wiki/Commutative
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https://en.wikipedia.org/wiki/Commutative
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Multiplication distributes over addition: κ·(μ + ν) = κ·μ + κ·ν and 

(μ + ν)·κ = μ·κ + ν·κ. 

Assuming the axiom of choice, multiplication of infinite cardinal 

numbers is also easy. If either κ or μ is infinite and both are non-zero, 

then 

 

3.3.5 Cardinal Division 

Assuming the axiom of choice and, given an infinite cardinal π and a 

non-zero cardinal μ, there exists a cardinal κ such that μ · κ = π if and 

only if μ ≤ π. It wbe unique (and equal to π) if and only if μ < π. 

3.3.6 Cardinal Exponentiation 

Exponentiation is given by 

where X
Y
 is the set of all functions from Y to X. 

κ
0
 = 1 (in particular 0

0
 = 1), see empty function. 

If 1 ≤ μ, then 0
μ
 = 0. 

1
μ
 = 1. 

κ
1
 = κ. 

κ
μ + ν

 = κ
μ
·κ

ν
. 

κ
μ · ν

 = (κ
μ
)
ν
. 

(κ·μ)
ν
 = κ

ν
·μ

ν
. 

Exponentiation is non-decreasing in both arguments: 

(1 ≤ ν and κ ≤ μ) → (ν
κ
 ≤ ν

μ
) and 

(κ ≤ μ) → (κ
ν
 ≤ μ

ν
). 

Note that 2
|X|

 is the cardinality of the power set of the 

set X and Cantor's diagonal argument shows that 2
|X|

 > |X| for any 

set X. This proves that no largest cardinal exists (because for any 

cardinal κ, we can always find a larger cardinal 2
κ
). In fact, 

the class of cardinals is a proper class. (This proof fails in some set 

theories, notably New Foundations.) 

All the remaining propositions in this section assume the axiom of 

choice: 
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If κ and μ are both finite and greater than 1, and ν is infinite, 

then κ
ν
 = μ

ν
. 

If κ is infinite and μ is finite and non-zero, then κ
μ
 = κ. 

If 2 ≤ κ and 1 ≤ μ and at least one of them is infinite, then: 

Max (κ, 2
μ
) ≤ κ

μ
 ≤ Max (2

κ
, 2

μ
). 

Using König's theorem, one can prove κ < κ
cf(κ)

 and κ < cf(2
κ
) for any 

infinite cardinal κ, where cf(κ) is the cofinality of κ. 

3.3.7 Cardinal Roots 

Assuming the axiom of choice and, given an infinite cardinal κ and a 

finite cardinal μ greater than 0, the cardinal ν satisfying will be κ. 

3.3.8 Cardinal Logarithms 

Assuming the axiom of choice and, given an infinite cardinal κ and a 

finite cardinal μ greater than 1, there may or may not be a cardinal λ 

satisfying . However, if such a cardinal exists, it is infinite and less than 

κ, and any finite cardinality ν greater than 1 will also satisfy . 

The logarithm of an infinite cardinal number κ is defined as the least 

crdinal number μ such that κ ≤ 2
μ
. Logarithms of infinite cardinals are 

useful in some fields of mathematics, for example in the 

studyof cardinalvariants of topological spaces, though they lack some of 

the properties that logarithms of positive real numbers possess.
[5][6][7]

 

The continuum hypothesis 

The continuum hypothesis (CH) states that there are no cardinals strictly 

The latter cardinal number is also often denoted by ; it is the cardinality 

of the continuum (the set of real numbers). In this case  The generalized 

continuum hypothesis (GCH) states that for every infinite set X, there are 

no cardinals strictly between | X | and 2
| X |

. The continuum hypothesis is 

independent of the usual axioms of set theory, the Zermelo-Fraenkel 

axioms together with the axiom of choice (ZFC). 
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3.4. WELL-ORDERING PRINCIPLE 

In mathematics, the well-ordering principle states that every non-empty 

set of positive integers contains a least element.
[1]

 In other words, the set 

of positive integers is well-ordered by its "natural" or "magnitude" order 

in which  precedes  if and only if  is either  or the sum of  and some 

positive integer (other orderings include the ordering ; and ). 

The phrase "well-ordering principle" is sometimes taken to be 

synonymous with the "well-ordering theorem". On other occasions it is 

understood to be the proposition that the set of integers contains a well-

ordered subset, called the natural numbers, in which every nonempty 

subset contains a least element. 

Depending on the framework in which the natural numbers are 

introduced, this (second order) property of the set of natural numbers is 

either an axiom or a provable theorem. For example: 

 In Peano arithmetic, second-order arithmetic and related systems, 

and indeed in most (not necessarily formal) mathematical treatments 

of the well-ordering principle, the principle is derived from the 

principle of mathematical induction, which is itself taken as basic. 

 Considering the natural numbers as a subset of the real numbers, and 

assuming that we know already that the real numbers are complete 

(again, either as an axiom or a theorem about the real number 

system), i.e., every bounded (from below) set has an infimum, then 

also every set  of natural numbers has an infimum, say . We can now 

find an integer  such that  lies in the half-open interval , and can then 

show that we must have , and  in . 

 In axiomatic set theory, the natural numbers are defined as the 

smallest inductive set (i.e., set containing 0 and closed under the 

successor operation). One can (even without invoking the regularity 

axiom) show that the set of all natural numbers such that " is well-

ordered" is inductive, and must therefore contain all natural numbers; 

from this property one can conclude that the set of all natural 

numbers is also well-ordered. 
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In the second sense, this phrase is used when that proposition is relied on 

for the purpose of justifying proofs that take the following form: to prove 

that every natural number belongs to a specified set S , assume the 

contrary, which implies that the set of counterexamples is non-empty and 

thus contains a smallest counterexample. Then show that for any 

counterexample there is a still smaller counterexample, producing a 

contradiction. This mode of argument is the contrapositive of proof 

by complete induction. It is known light-heartedly as the "minimal 

criminal" method and is similar in its nature to Fermat's method of 

"infinite descent". 

Garrett Birkhoff and Saunders Mac Lane wrote in A Survey of Modern 

Algebra that this property, like the least upper bound axiom for real 

numbers, is non-algebraic; i.e., it cannot be deduced from the algebraic 

properties of the integers (which form an ordered integral domain). 

3.4.1 Well-ordered sets 

In a well-ordered set, every non-empty subset contains a distinct smallest 

element. Given the axiom of dependent choice, this is equivalent to just 

saying that the set is totally ordered and there is no infinite decreasing 

sequence, something perhaps easier to visualize. In practice, the 

importance of well-ordering is justified by the possibility of 

applying transfinite induction, which says, essentially, that any property 

that passes on from the predecessors of an element to that element itself 

must be true of all elements (of the given well-ordered set). If the states 

of a computation (computer program or game) can be well-ordered in 

such a way that each step is followed by a "lower" step, then the 

computation will terminate. 

It is inappropriate to distinguish between two well-ordered sets if they 

only differ in the "labeling of their elements", or more formally: if the 

elements of the first set can be paired off with the elements of the second 

set such that if one element is smaller than another in the first set, then 

the partner of the first element is smaller than the partner of the second 

element in the second set, and vice versa. Such a one-to-one 

correspondence is called an order isomorphism and the two well-ordered 

sets are said to be order-isomorphic, or similar (obviously this is 
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an equivalence relation). Provided there exists an order isomorphism 

between two well-ordered sets, the order isomorphism is unique: this 

makes it quite justifiable to consider the two sets as essentially identical, 

and to seek a "canonical" representative of the isomorphism type (class). 

This is exactly what the ordinals provide, and it also provides a canonical 

labeling of the elements of any well-ordered set. Formally, if a partial 

order < is defined on the set S, and a partial order <' is defined on the 

set S' , then the posets (S,<) and (S' ,<') are order isomorphic if there is 

a bijection f that preserves the ordering. That is, f(a) <' f(b) if and only 

if a < b. Every well-ordered set (S,<) is order isomorphic to the set of 

ordinals less than one specific ordinal number [the order type of (S,<)] 

under their natural ordering. 

Essentially, an ordinal is intended to be defined as an isomorphism class 

of well-ordered sets: that is, as an equivalence class for the equivalence 

relation of "being order-isomorphic". There is a technical difficulty 

involved, however, in the fact that the equivalence class is too large to be 

a set in the usual Zermelo–Fraenkel (ZF) formalization of set theory. But 

this is not a serious difficulty. The ordinal can be said to be the order 

typeof any set in the class. 

3.5. ORDINAL NUMBER 

Figure 5.1  

https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Partially_ordered_set
https://en.wikipedia.org/wiki/Order_isomorphic
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Equivalence_class
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
https://en.wikipedia.org/wiki/Order_type
https://en.wikipedia.org/wiki/Order_type
https://en.wikipedia.org/wiki/File:Omega-exp-omega-labeled.svg
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Representation of the ordinal numbers up to ωω. Each turn of the spiral 

represents one power of ω 

In set theory, an ordinal number, or ordinal, is one generalization of 

the concept of a natural number that is used to describe a way to arrange 

a collection of objects in order, one after another. Any finite collection of 

objects can be put in order just by the process of counting: labeling the 

objects with distinct natural numbers. Ordinal numbers are thus the 

"labels" needed to arrange collections of objects in order. 

An ordinal number is used to describe the order type of a well-

ordered set (though this does not work for a well-ordered proper class). 

A well-ordered set is a set with a relation > such that 

Trichotomy 

For any elements x and y, exactly one of these statements is true 

 x > y 

 y = x 

 y > x 

Transitivity 

For any elements x, y, z, if x > y and y > z, then x > z 

Well-foundedness 

Every non-empty subset has a least element, that is, it has an 

element x such that there is no other element y in the subset 

where x > y 

Two well-ordered sets have the same order type if and only if there is 

a bijection from one set to the other that converts the relation in the first 

set to the relation in the second set. 

Whereas ordinals are useful for ordering the objects in a collection, they 

are distinct from cardinal numbers, which are useful for saying how 

many objects are in a collection. Although the distinction between 

ordinals and cardinals is not always apparent in finite sets (one can go 

from one to the other just by counting labels), different infinite ordinals 

can describe the same cardinal. Like other kinds of numbers, ordinals can 

be added, multiplied, and exponentiated, although the addition and 

multiplication are not commutative. 

https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Order_type
https://en.wikipedia.org/wiki/Well_ordering
https://en.wikipedia.org/wiki/Well_ordering
https://en.wikipedia.org/wiki/Proper_class
https://en.wikipedia.org/wiki/Trichotomy_(mathematics)
https://en.wikipedia.org/wiki/Transitive_relation
https://en.wikipedia.org/wiki/Well-founded_relation
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Cardinal_number
https://en.wikipedia.org/wiki/Infinite_set
https://en.wikipedia.org/wiki/Ordinal_arithmetic
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3.5.1 Von Neumann definition of ordinals 

First few von Neumann ordinals 

0 = { } = ∅ 

1 = { 0 } = {∅} 

2 = { 0, 1 } = { ∅, {∅} } 

3 = { 0, 1, 2 } = { ∅, {∅} , {∅, {∅}} } 

4 = { 0, 1, 2, 3 } = { ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} } 

Rather than defining an ordinal as an equivalence class of well-ordered 

sets, it will be defined as a particular well-ordered set that (canonically) 

represents the class. Thus, an ordinal number will be a well-ordered set; 

and every well-ordered set will be order-isomorphic to exactly one 

ordinal number. 

For each well-ordered set ,  defines an order isomorphism between  and 

the set of all subsets of  having the form  ordered by inclusion. This 

motivates the standard definition, suggested by John von Neumann, now 

called definition of von Neumann ordinals: "each ordinal is the well-

ordered set of all smaller ordinals." In symbols, λ = [0,λ).
[3][4]

 Formally: 

A set S is an ordinal if and only if S is strictly well-ordered with 

respect to set membership and every element of S is also a subset 

of S. 

The natural numbers are thus ordinals by this definition. For 

instance, 2 is an element of 4 = {0, 1, 2, 3}, and 2 is equal to {0, 1} 

and so it is a subset of {0, 1, 2, 3}. 

It can be shown by transfinite induction that every well-ordered set is 

order-isomorphic to exactly one of these ordinals, that is, there is an 

order preserving bijective function between them. 

Furthermore, the elements of every ordinal are ordinals themselves. 

Given two ordinals S and T, S is an element of T if and only if S is 

https://en.wikipedia.org/wiki/Order_isomorphism
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Von_Neumann_ordinals
https://en.wikipedia.org/wiki/Ordinal_number#cite_note-von_Neumann1923pp199-208-3
https://en.wikipedia.org/wiki/Ordinal_number#cite_note-von_Neumann1923pp199-208-3
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Strict_order
https://en.wikipedia.org/wiki/Transfinite_induction
https://en.wikipedia.org/wiki/Bijective_function
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a proper subset of T. Moreover, either S is an element of T, or T is an 

element of S, or they are equal. So every set of ordinals is totally 

ordered. Further, every set of ordinals is well-ordered. This 

generalizes the fact that every set of natural numbers is well-ordered. 

Consequently, every ordinal S is a set having as elements precisely 

the ordinals smaller than S. For example, every set of ordinals has 

a supremum, the ordinal obtained by taking the union of all the 

ordinals in the set. This union exists regardless of the set's size, by 

the axiom of union. 

The class of all ordinals is not a set. If it were a set, one could show 

that it was an ordinal and thus a member of itself, which would 

contradict its strict ordering by membership. This is the Burali-Forti 

paradox. The class of all ordinals is variously called "Ord", "ON", or 

"∞". 

An ordinal is finite if and only if the opposite order is also well-

ordered, which is the case if and only if each of its subsets has 

a maximum. 

3.5.2 Transfinite Sequence 

If α is a limit ordinal and X is a set, an α-indexed sequence of 

elements of X is a function from α to X. This concept, 

a transfinite sequence or ordinal-indexed sequence, is a 

generalization of the concept of a sequence. An ordinary 

sequence corresponds to the case α = ω. 

3.5.3 Transfinite Induction 

Transfinite induction holds in any well-ordered set, but it is so important 

in relation to ordinals that it is worth restating here. 

Any property that passes from the set of ordinals smaller than a 

given ordinal α to α itself, is true of all ordinals. 

That is, if P(α) is true whenever P(β) is true for all β < α, then P(α) is 

true for all α. Or, more practically: in order to prove a property P for 

https://en.wikipedia.org/wiki/Proper_subset
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Supremum
https://en.wikipedia.org/wiki/Axiom_of_union
https://en.wikipedia.org/wiki/Burali-Forti_paradox
https://en.wikipedia.org/wiki/Burali-Forti_paradox
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Maximum
https://en.wikipedia.org/wiki/Limit_ordinal
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Well-order
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all ordinals α, one can assume that it is already known for all 

smaller β < α. 

3.5.4 Successor and limit Ordinals 

Any nonzero ordinal has the minimum element, zero. It may or may not 

have a maximum element. For example, 42 has maximum 41 and ω+6 

has maximum ω+5. On the other hand, ω does not have a maximum 

since there is no largest natural number. If an ordinal has a maximum α, 

then it is the next ordinal after α, and it is called a successor ordinal, 

namely the successor of α, written α+1. In the von Neumann definition 

of ordinals, the successor of α is  since its elements are those of α and α 

itself.
[3]

 

A nonzero ordinal that is not a successor is called a limit ordinal. One 

justification for this term is that a limit ordinal is the limit in a 

topological sense of all smaller ordinals (under the order topology). 

When  is an ordinal-indexed sequence, indexed by a limit γ and the 

sequence is increasing, i.e.  whenever  its limit is defined as the least 

upper bound of the set  that is, the smallest ordinal (it always exists) 

greater than any term of the sequence. In this sense, a limit ordinal is the 

limit of all smaller ordinals (indexed by itself). Put more directly, it is the 

supremum of the set of smaller ordinals. 

Another way of defining a limit ordinal is to say that α is a limit ordinal 

if and only if: 

There is an ordinal less than α and whenever δ is an ordinal less 

than α, then there exists an ordinal ξ such that δ < ξ < α. 

So in the following sequence: 

0, 1, 2, …, ω, ω+1 

ω is a limit ordinal because for any smaller ordinal (in this 

example, a natural number) there is another ordinal (natural 

number) larger than it, but still less than ω. 

Thus, every ordinal is either zero, or a successor (of a well-

defined predecessor), or a limit. This distinction is important, 

because many definitions by transfinite induction rely upon it. 

https://en.wikipedia.org/wiki/Successor_ordinal
https://en.wikipedia.org/wiki/Ordinal_number#cite_note-von_Neumann1923pp199-208-3
https://en.wikipedia.org/wiki/Limit_ordinal
https://en.wikipedia.org/wiki/Limit_point
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Very often, when defining a function F by transfinite induction 

on all ordinals, one defines F(0), and F(α+1) assuming F(α) is 

defined, and then, for limit ordinals δ one defines F(δ) as the 

limit of the F(β) for all β<δ (either in the sense of ordinal limits, 

as previously explained, or for some other notion of limit 

if F does not take ordinal values). Thus, the interesting step in 

the definition is the successor step, not the limit ordinals. Such 

functions (especially for Fnondecreasing and taking ordinal 

values) are called continuous. Ordinal addition, multiplication 

and exponentiation are continuous as functions of their second 

argument. 

Check In Progress-II 

Q. 1 Dfine Ordinal Number. 

Solution : 

………………………………………………………………………….. 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define Well Ordering Principal. 

Solution : 

………………………………………………………………………….. 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 
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3.5.5 Indexing Classes of Ordinal 

Any well-ordered set is similar (order-isomorphic) to a unique ordinal 

number ; in other words, its elements can be indexed in increasing 

fashon by the ordinals less than . This applies, in particular, to any set of 

ordinals: any set of ordinals is naturally indexed by the ordinals less 

than some . The same holds, with a slight modification, for classes of 

ordinals (a collection of ordinals, possibly too large to form a set, 

defined by some property): any class of ordinals can be indexed by 

ordinals (and, when the class is unbounded in the class of all ordinals, 

this puts it in class-bijection with the class of all ordinals). So the -

th element in the class (with the convention that the "0-th" is the 

smallest, the "1-st" is the next smallest, and so on) can be freely spoken 

of. Formally, the definition is by transfinite induction: the -th element of 

the class is defined (provided it has already been defined for all ), as the 

smallest element greater than the -th element for all . 

This could be applied, for example, to the class of limit ordinals: the -th 

ordinal, which is either a limit or zero is  (see ordinal arithmetic for the 

definition of multiplication of ordinals). Similarly, one can 

consider additively indecomposable ordinals (meaning a nonzero 

ordinal that is not the sum of two strictly smaller ordinals): the -th 

additively indecomposable ordinal is indexed as S. The technique of 

indexing classes of ordinals is often useful in the context of fixed points:  

 

3.5.6 Closed Unbounded Sets and Classes 

A class  of ordinals is said to be unbounded, or cofinal, when given any 

ordinal , there is a  in  such that  (then the class must be a proper class, 

i.e., it cannot be a set). It is said to be closed when the limit of a 

sequence of ordinals in the class is again in the class: or, equivalently, 

when the indexing (class-)function  is continuous in the sense that, for  a 

limit ordinal,  (the -th ordinal in the class) is the limit of all  for ; this is 

also the same as being closed, in the topological sense, for the order 

topology (to avoid talking of topology on proper classes, one can 

https://en.wikipedia.org/wiki/Ordinal_arithmetic
https://en.wikipedia.org/wiki/Additively_indecomposable_ordinal
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Order_topology
https://en.wikipedia.org/wiki/Order_topology
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demand that the intersection of the class with any given ordinal is closed 

for the order topology on that ordinal, this is again equivalent). 

Of particular importance are those classes of ordinals that are closed and 

unbounded, sometimes called clubs. For example, the class of all limit 

ordinals is closed and unbounded: this translates the fact that there is 

always a limit ordinal greater than a given ordinal, and that a limit of 

limit ordinals is a limit ordinal (a fortunate fact if the terminology is to 

make any sense at all!). The class of additively indecomposable ordinals, 

or the class of  ordinals, or the class of cardinals, are all closed 

unbounded; the set of regular cardinals, however, is unbounded but not 

closed, and any finite set of ordinals is closed but not unbounded. 

A class is stationary if it has a nonempty intersection with every closed 

unbounded class. All superclasses of closed unbounded classes are 

stationary, and stationary classes are unbounded, but there are stationary 

classes that are not closed and stationary classes that have no closed 

unbounded subclass (such as the class of all limit ordinals with countable 

cofinality). Since the intersection of two closed unbounded classes is 

closed and unbounded, the intersection of a stationary class and a closed 

unbounded class is stationary. But the intersection of two stationary 

classes may be empty, e.g. the class of ordinals with cofinality ω with the 

class of ordinals with uncountable cofinality. 

Rather than formulating these definitions for (proper) classes of ordinals, 

one can formulate them for sets of ordinals below a given ordinal  : A 

subset of a limit ordinal   is said to be unbounded (or cofinal) 

under provided any ordinal less than   is less than some ordinal in the set. 

More generally, one can call a subset of any ordinal   cofinal 

in   provided every ordinal less than  is less than or equal to some ordinal 

in the set. The subset is said to be closed under  provided it is closed for 

the order topology in , i.e. a limit of ordinals in the set is either in the set 

or equal to  itself. 

3.6 ARITHMETIC OF ORDINALS 

There are three usual operations on ordinals: addition, multiplication, and 

(ordinal) exponentiation. Each can be defined in essentially two different 

ways: either by constructing an explicit well-ordered set that represents 

https://en.wikipedia.org/wiki/Club_set
https://en.wikipedia.org/wiki/Club_set
https://en.wikipedia.org/wiki/Ordinal_number#Ordinals_and_cardinals
https://en.wikipedia.org/wiki/Ordinal_number#Cofinality
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the operation or by using transfinite recursion. The Cantor normal 

form provides a standardized way of writing ordinals. It uniquely 

represents each ordinal as a finite sum of ordinal powers of ω. However, 

this cannot form the basis of a universal ordinal notation due to such self-

referential representations as ε0 = ω
ε
0. The so-called "natural" 

arithmetical operations retain commutativity at the expense of continuity. 

Interpreted as nimbers, ordinals are also subject to nimber arithmetic 

operations. 

3.6.1 Ordinals and cardinals 

Initial ordinal of a cardinal 

Each ordinal associates with one cardinal, its cardinality. If there is a 

bijection between two ordinals (e.g. ω = 1 + ω and ω + 1 > ω), then they 

associate with the same cardinal. Any well-ordered set having an ordinal 

as its order-type has the same cardinality as that ordinal. The least 

ordinal associated with a given cardinal is called the initial ordinal of 

that cardinal. Every finite ordinal (natural number) is initial, and no other 

ordinal associates with its cardinal. But most infinite ordinals are not 

initial, as many infinite ordinals associate with the same cardinal. 

The axiom of choice is equivalent to the statement that every set can be 

well-ordered, i.e. that every cardinal has an initial ordinal. In theories 

with the axiom of choice, the cardinal number of any set has an initial 

ordinal, and one may employ the Von Neumann cardinal assignment as 

the cardinal's representation. In set theories without the axiom of choice, 

a cardinal may be represented by the set of sets with that cardinality 

having minimal rank (see Scott's trick). 

The α-th infinite initial ordinal is written , it is always a limit ordinal. Its 

cardinality is written . For example, the cardinality of ω0 = ω is , which is 

also the cardinality of ω
2
 or ε0 (all are countable ordinals). So ω can be 

identified with , except that the notation  is used when writing cardinals, 

and ω when writing ordinals (this is important since, for 

example,  =  whereas ). Also,  is the smallest uncountable ordinal (to see 

that it exists, consider the set of equivalence classes of well-orderings of 

the natural numbers: each such well-ordering defines a countable ordinal, 

and  is the order type of that set),  is the smallest ordinal whose 

https://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
https://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
https://en.wikipedia.org/wiki/Nimber
https://en.wikipedia.org/wiki/Cardinal_number
https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Von_Neumann_cardinal_assignment
https://en.wikipedia.org/wiki/Scott%27s_trick
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cardinality is greater than , and so on, and  is the limit of the  for natural 

numbers n (any limit of cardinals is a cardinal, so this limit is indeed the 

first cardinal after all the ). 

3.6.2 Cofinality 

The cofinality of an ordinal  is the smallest ordinal  that is the order type 

of a cofinal subset of . Notice that a number of authors define cofinality 

or use it only for limit ordinals. The cofinality of a set of ordinals or any 

other well-ordered set is the cofinality of the order type of that set. 

Thus for a limit ordinal, there exists a -indexed strictly increasing 

sequence with limit . For example, the cofinality of ω² is ω, because the 

sequence ω·m (where m ranges over the natural numbers) tends to ω²; 

but, more generally, any countable limit ordinal has cofinality ω. An 

uncountable limit ordinal may have either cofinality ω as does  or an 

uncountable cofinality. 

The cofinality of 0 is 0. And the cofinality of any successor ordinal is 1. 

The cofinality of any limit ordinal is at least . 

An ordinal that is equal to its cofinality is called regular and it is always 

an initial ordinal. Any limit of regular ordinals is a limit of initial 

ordinals and thus is also initial even if it is not regular, which it usually is 

not. If the Axiom of Choice, then  is regular for each α. In this case, the 

ordinals 0, 1, , , and  are regular, whereas 2, 3, , and ωω·2 are initial 

ordinals that are not regular. 

The cofinality of any ordinal α is a regular ordinal, i.e. the cofinality of 

the cofinality of α is the same as the cofinality of α. So the cofinality 

operation is idempotent. 

 

3.6.3 Topology and Ordinals 

Any ordinal number can be made into a topological space by endowing it 

with the order topology; this topology is discrete if and only if the 

ordinal is a countable cardinal, i.e. at most ω. A subset of ω + 1 is open 

in the order topology if and only if either it is cofinite or it does not 

contain ω as an element. 

https://en.wikipedia.org/wiki/Cofinality
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See the Topology and ordinals section of the "Order topology" article. 

3.6.4 Downward Closed Sets of Ordinals 

A set is downward closed if anything less than an element of the set is 

also in the set. If a set of ordinals is downward closed, then that set is an 

ordinal—the least ordinal not in the set. 

Examples: 

 The set of ordinals less than 3 is 3 = { 0, 1, 2 }, the smallest ordinal 

not less than 3. 

 The set of finite ordinals is infinite, the smallest infinite ordinal: ω. 

 The set of countable ordinals is uncountable, the smallest 

uncountable ordinal: ω1. 

3.7 SUMMARY 

We study in this unit about Cardinal numbers and its definition. We 

study Downward closed sets of Ordinals. We study Cofinality and its 

introduction. We study success of limit cardinal. We study Ordinal 

Numbers.  

3.8 KEYWORD 

CARDINAL: A leading dignitary of the Roman Catholic Church. 

Cardinals are nominated by the Pope, and form the Sacred College which 

elects succeeding popes (now invariably from among their own number 

ORDINAL : A service book, especially one with the forms of service 

used at ordinations. 

IDEMPOTENT : Denoting an element of a set which is unchanged in 

value when multiplied or otherwise operated on by itself 

 

3.9 EXERCISE  

Q. 1 What is cardinals numbers ? Give example. 

Q. 2 What is Ordinal Number ? Give example. 

Q. 3 What is well order set ? 

https://en.wikipedia.org/wiki/Order_topology#Topology_and_ordinals
https://en.wikipedia.org/wiki/Downward_closed
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Q. 4 In topology what is Idempotent ? 

Q. 5 What is cardinal arithemetic ? 

 

3.10 ANSWER FOR CHECK IN 

PROGRESS 

Check in Progress-I 

Answer  Q. 1 Check in Section 3 

              Q 2 Check in Section 4 

Check in Progress-II 

Answer  Q. 1 Check in Section 1 

              Q 2 Check in Section 1 
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UNIT 4 TOPOLOGICAL SPACE 

 STRUCTURE 

4.0 Objective 

4.1 Introduction 

4.2 Basis Of Topology 

4.3  The Order Topology 

4.4 The Product Topology On X x Y 

4.5 Subspace of Topology 

4.6 Closed Set and Limit Points 

4.7 Subbase 

4.8 Alexander Subbase Theorem 

4.9 Topological Basis And Sub-Basis 

4.10 Summary 

4.11 Keyword 

4.12 Exercise 

4.13 Answer For Check In Progress 

4.14 Suggestion Reading And Reference 

4.15 Bibliography 

4.0 OBJECTIVE 

* We study in this unit basis of topology 

* learn subspace topology, closed set, limit point 

* Subbase topology 

* Learn Alexander subbase theorem 

* learn order topology 

 

4.1 INTRODUCTION 

In topology and related branches of mathematics, a topological 

space may be defined as a set of points, along with a set 

of neighbourhoods for each point, satisfying a set 
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of axioms relating points and neighbourhoods. The definition of 

a topological space relies only upon set theory and is the most 

general notion of a mathematical space that allows for the 

definition of concepts such as continuity, connectedness, 

and convergence. Other spaces, such as manifolds and metric 

spaces, are specializations of topological spaces with 

extra structures or constraints. Being so general, topological 

spaces are a central unifying notion and appear in virtually 

every branch of modern mathematics. The branch of 

mathematics that studies topological spaces in their own right is 

called point-set topology or general topology. 

 
Definition 0.1.1. A topology on a set X is a collection 

J of subsets of X having the following properties:  

(i)∅ and X are in J .  

(ii) The union of the elements of any subcollection of J is in J .  

(iii) The intersection of the elements of any finite subcollection of J 
is in J .  

A set X for which a topology J has been specified is 

called a topological space. If X is a topological space 

with topology J , we say that a subset U of X is an 

open set of X , if U belongs to the collection J .  

If X is any set, the collection of all subsets of X is a 

topology on X , it is called  

the discrete topology. The collection consisting of X and 

∅ only is also a topology  

on X , it is called the indiscrete topology or the trivial 

topology.  

Let X be a set. Let Jf be a collection of all subsets U of 

X such that X −U either  

is finite or is all of X . Then Jf is a topology on X , 

called the finite complement  
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topology.  

 

Result 0.1.2. Jf is a finite complement topology.  

Proof.  Since X − X = ∅ and X − ∅ = X , either 

is finite or is all of X . Both X and ∅ are in Jf .  

To show that  Uα is in Jf .  

X-U   Uα =  (X − Uα). 

Since X − Uα is finite then  (X − Uα) is finite. 

Then (X −Uα) is finite. 

 

Therefore,Uα is in Jf .  

If U1 , U2 , _ _ _ , Un or non empty elements of Jf .  

To show that Ui is in Jf .  
n               n 

Now we know that X −  I Ui = U  (X − Ui). 
i=1         i=1 

 

                      n  

since (X − Ui) is finite then U  (X − Ui) is finite.  
                 i=1  

Then I Uα is in Jf .  

Therefore, Jf is a finite complement topology.  

Definition 0.1.3. Suppose that J and J ′ are two 

topologies on a given set X . If J ′ ⊃ J , we say that J ′ 

is finer than J; if J properly contains J , we say that J 

is strictly finer than J.  We also say that J  is 

coarser than J ′ , or strictly coarser, in these two 

respective situations.  We say J is comparable with J ′ 

if either J ⊃ J or J ⊃ J  .  

 

4.2 BASIS FOR A TOPOLOGY  

Definition 0.2.1. If X is a set, a basis for a topology 

on X is a collection B of subsets of X (called basis 

elements ) such that  
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(i) For each x ∈ X , there is at least one basis element B containing x.  

(ii) If x belongs to the intersection of two basis 

elements B1 and B2, then there is a basis element B3 

containing x such that B3 ⊂ B1 ∩ B2.  

If B satisfies these two conditions, then we define the 

topology J  generated by B as follows: A subset U of 

X is said to be open in X (that is, to be an element of J 

) if for each x ∈ U , there is a basis element B ∈ B 

such that x ∈ B and B ⊂ U . Note that each basis 

element is itself an element of J .  

Lemma 0.2.2. Let X be a set; let B be a basis for a 

topology J on X . Then J equals the collection of all 

unions of elements of B.  

 

Proof.  Let X be a set and B be the basis for the topology J on X .  

The collection of elements of B are also elements of J 

because J is a topology, their union is in J .  

Conversely, given U ∈ J , choose for each x ∈ U an element Bx of B 

such that  

x ∈ Bx ⊂ U . Then U = U Bx, so U equals a union of elements of B. 
                                                 x∈U  

Lemma 0.2.3. Let X be a topological space. Suppose 

that C is a collection of open sets of X such that for 

each open set U of X and each x in U , there is an 

element C of C such that x ∈ C ⊂ U . Then C is a basis 

for the topology of X .  

 

Proof.  First we prove that C is a basis.  

Given x ∈ X , since X is an open set, by hypothesis an 

element C of C such that x ∈ C ⊂ X .  

Let x ∈ C1 ∩ C2 where C1 and C2 

are the elements of C . Since C1 
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and C2 are open, C1 ∩ C2 are 

open.  

By hyphothesis, there exists an element C3 of C such 

that x ∈ C3 ⊂ C1 ∩ C2. Therefore, C is a basis.  

Let J be the topology on X .  

Let J ′ denote the 

topology 

generated by C . 

To prove that J ′ = 

J .  

By 0.2.4, J ′ is finer than J .  

Conversely, since each element of C is an element of J , 

the union of elements of C is also in J .  

By 0.2.2, J ′ contains J . 

Therefore, J ′ = J .  

Therefore, C is a basis for the topology of X .  

Lemma 0.2.4. Let B and B′ be bases for the 

topologies J and J ′ , respectively, on X . Then the 

following are equivalent:  

(i) J ′ is finer than J .  

(ii) For each x ∈ X and each basis element B ∈ B 

containing x, there is a basis element B ′ ∈ B′ such that 

x ∈ B ′ ⊂ B .  

 

Proof.  To prove (ii)⇒(i)  

Given an element U ∈ J .  

To show that U ∈ J ′ .  

Let x ∈ U . Since B generates J , there is an element B ∈ 

B such that x ∈ B ⊂ U . By (ii), there exists an element B 

′ ∈ B′ such that x ∈ B ′ ⊂ B , then x ∈ B ′ ⊂ U . By 

definition of basis for the topology, U ∈ J ′ .  
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To prove (i)⇒(ii)  

Given x ∈ X and B ∈ B with x ∈ B.  

Now B ∈ J , by definition and J ⊂ J ′ by (i); therefore B ∈ J ′ .  

Since J ′ is generated by B′ , there is an element B ′ ∈ B′ 

such that x ∈ B ′ ⊂ B .  

Definition 0.2.5. If B is the collection of all open 

intervals in the real line,  

 

(a, b) = {x|a < x < b},  

the topology generated by B is called the standard 

topology on the real line.  

If B′ is the collection of all half-open intervals of the form  

 

 

[a, b) = {x|a ≤ x < b},  
 

where a < b, the topology generated by B′ is called the lower limit 

topology on  

R. When R is given the lower limit topology, we 

denote it by Rl . Finally let K denote the set of all 

numbers of the form 1/n, for n ∈ Z+, and let B′′ be 

the collection of all open intervals (a, b), along with 

all sets of the form (a, b) − K . The topology generated 

by B′′ will be called the K-topology on R.  When R is 

given this topology, we denote it by Rk .  

Lemma 0.2.6. The topologies of Rl and Rk are strictly 

finer than three standard topology on R, but are not 

comparable with one another.  

 

Proof.  Let J , J ′ , J ′′ be the topologies of R, Rl , Rk ,respectively.  

Given a basis element (a, b) for J and a point x of (a, b), 

the basis element [x, b) for J ′ contains x and lies in (a, 
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b).  On the otherhand,given the basis element [x, d) 

for J ′ , there is no open interval (a, b) that contains x 

and lies in [x, d). Thus J ′ is strictly finer than J .  

Given a basis element (a, b) for J and a point x of (a, 

b), this same interval is a basis element for J ′′ that 

contains x. On the otherhand, given the basis element 

B = (−1, 1) − K for J ′′ and the point O of B, there is 

no open interval that contains O and lies in B .  

By definition of comparable, J ′ and J ′′ are not comparable with one 

another.  

Definition 0.2.7. A subbasis S for a topology on X is 

a collection of subsets of X whose union equals X . The 

topology generated by the subbasis S is defined to be 

the collection J of all unions of finite intersections of 

elements of S .  

 

4.3 THE ORDER TOPOLOGY  

Definition 0.3.1. If X is a simply ordered set, there is 

a standard topology for X, defined using the order 

relation. It is called the order topology.  

Suppose that X is a set having a simple order relation 

<. Given elements a and b of X such that a < b, there 

are four subsets of X that are called the intervals 

determined by a and b. They are the following:  

 

(a, b) = {x|a < x < b},  

(a, b] = {x|a < x ≤ b}, [a, 

b) = {x|a ≤ x < b}, [a, b] = 

{x|a ≤ x ≤ b}.  

A set of the first type is called an open interval in X 
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, a set of the last type is called a closed interval in X , 

and sets of the second and third types are called half-

open intervals.  

Definition 0.3.2. Let X be a set with a simple order 

relation; assume X has more than one element. Let B 

be the collection of all sets of the following types:  

(1) All open intervals (a, b) in X .  

(2) All intervals of the form [a0, b), where a0 is the smallest element(if 

any) of X .  

(3) All intervals of the form (a, b0], where b0 is the 

largest element(if any) of X . The collection B is a basis 

for a topology on X , which is called the order topology.  

Definition 0.3.3. If X is an ordered set, and a is an 

element of X , there are four subsets of X that are 

called rays determined by a. They are the following:  

 

(a, +∞) = {x|x > a},  

(−∞,a) = {x|x < a}, [a, 

+∞) = {x|x ≥ a}, (−∞,a] 

= {x|x ≤ a}.  

Sets of the first types are called open rays, and sets of 

the last two types are called closed rays.  

 

Check In Progress-I 

Q. 1 Define Order Topology. 

Solution: 

…………………………………………………………………………

…..……………………………………………………………………

…………………………………………………………………………
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…………………………………………………………………………

…………………… 

Q. 2 Basis of a Topology. 

Solution: 

……………………………………………………………… 

…………………………………………………………………………

…………………………………………………………………………

………………………………………………………………………… 

………………………………………………………………………… 

 

4.4 THE PRODUCT TOPOLOGY ON X 
× Y  

Definition 0.4.1. Let X and Y be topological spaces. The product 

topology on X × Y is the topology having as basis the collection B 

of all sets of the form U × V , where U is an open subset of X and V is 

an open subset of Y .  

Theorem 0.4.2. If B is a basis for the topology of X and C is a 

basis for the topology of Y , then the collection  

 

 

D = {B × C|B ∈ B and C ∈ C }  
 

is a basis for the topology of X × Y .  

Proof.  We apply 0.2.3. Given an open set W of X × Y and a point x × 

y of W , by definition of the product topology there is a basis 

element U × V  such that  

x × y ∈ U × V ⊂ W .  

Because B and C are bases for X and Y respectively, we can choose 

an element B of B such that x ∈ B ⊂ U and an element C of C such 
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that y ∈ C ⊂ V . Then x × y ∈ B × C ⊂ W .  

Therefore, D is a basis for X × Y .  
 

Definition 0.4.3. Let π1 : X × Y → X be defined by the equation  

π1(x, y) = x;  

let π2 : X × Y → Y be defined by the equation  

π2(x, y) = y.  

The maps π1 and π2 are called the projections of X × Y onto its first 

and second factors, respectively.  

We use the word ‖onto‖ because π1 and π2 are surjective.  

Note If U is an open subset of X , then the set π−1
1 (U ) is precisely 

the set 

U × Y , which is open in X × Y . Similarly, if V is open in Y , then 

 

π−1 2 (V ) = X × V ,  

which is also open in X × Y . The intersection of these two sets is the 

set U × V .  Theorem 0.4.4. The collection  

S = {π−1
1(U )|U open in X } ∪ {π−

12 (V )|V  open in Y } 
 

is a subbasis for the product topology on X × Y . 

 

Proof.  Let J denote the product topology on X × Y .  

Let J ′ be the topology generated by S . Because every element of S 

belongs to  

J , by definition of subbasis, arbitrary unions of finite intersections of 

elements of S . Thus J ′ ⊂ J . On the otherhand,  

 

 

 

U × V = π−1
1 (U ) ∩ π −1

2 (V ) 

 

where π−
11(U ) is open in X and π−

12 (V ) is open in Y . 

Since U × V ∈ J , we have U × V = π−1
1 (U ) ∩ π−1

2 (V ). U × V ∈ J ′ . 

Therefore, 
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J ⊂ J ′ .  

 

 

4.5 THE SUBSPACE TOPOLOGY  

Definition 0.5.1. Let X be a topological space with topology J . If Y 

is a subset of X , the collection  

 

JY = {Y ∩ U |U ∈ J }  

is a topology on Y , called the subspace topology. With this topology, 

Y is called  

a subspace of X ; its open sets consist of all intersections of open sets 

of X with  

Y .  

Lemma 0.5.2. If B is a basis for the topology of X then the 

collection  

 

BY = {B ∩ Y |B ∈ B}  
 

is a basis for the subspace topology on Y .  

Proof.  Consider U is open in X . Given B is a basis for the topology 

of X . We can choose an element B of B such that y ∈ B ⊂ U .  

Then y ∈ B ∩ Y ⊂ U ∩ Y , since BY = {B ∩ Y |B ∈ B}.  

By 0.2.3 or definition of basis, BY is a basis for the subspace topology 

on Y .   

Definition 0.5.3. If Y is a subspace of X , we say that a set U is 

open in Y (or  

open relative to Y ) if it belongs to the topology of Y ; this implies in 

particular  

that it is a subset of Y . We say that U is open in X if it belongs to the 

topology  

of X .  

Lemma 0.5.4. Let Y be a subspace of X . If U is open in Y and Y is 
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open in X, then U is open in X .  

 

Proof.  Given U is open in Y and Y is open in X .  

Since U is open in Y and Y is a subspace of X then U = Y ∩ V where V 

is open in X .  

Since Y and V are both open in X , Y ∩ V is open in X .  

Therefore, U is open in X .  

Theorem 0.5.5. If A is a subspace of X and B is a subspace of Y , 

then the product topology on A ×B is the same as the topology A ×B 

inherits as a subspace of X × Y .  

Proof.  The set U × V is the general basis element for X × Y , where U 

is open in X and V is open in Y .  

Then (U × V ) ∩ (A × B) is the general basis element for the subspace 

topology on A × B. Now  

 

(U × V ) ∩ (A × B) = (U ∩ A) × (V ∩ B).  

Since U ∩ A and V ∩ B are the general open sets for the subspace 

topologies on A andB respectively, the set (U ∩ A) × (V ∩ B) is the 

general basis element for the product on A × B.  

The bases for the subspace topology on A × B and for the product 

topology on  

A × B are the same. Hence the topologies are the same.  

Theorem 0.5.6. Let X be an ordered set in the order topology; let Y 

be a subset of X that is convex in X .  Then the order topology on 

Y  is the same as the topology Y inherits as a subspace of X .  

 

Proof.  Consider the ray (a, +∞) in X .  

If a ∈ Y , then (a, +∞) ∩ Y  = {x|x ∈ Y and x > a}; this is an open ray 

of the ordered set Y .  

If aY , then a is either a lower bound on Y or an upper bound on Y , 

since Y is convex.  
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If a ∈ Y , the set (a, +∞) ∩ Y equals all of Y . If a  Y , it is empty.  

Similarly the intersection of the ray (−∞, a) ∩ Y  is either an open 

ray of Y , or Y itself or empty.  

Since the sets (a, +∞) ∩ Y  and (−∞, a) ∩ Y form a sub basis for the 

subspace topology on Y and since each is open in the order 

topology, the order topology. 

contains the subspace topology.  

Conversely, Y  equals the intersection of X with Y , that is X ∩ Y = Y 

.  So it is open in the subspace topology on Y .  The order topology 

is contained in the subspace topology. Therefore, the order topology 

and subspace topology are  

same.  

 

4.6 CLOSED SETS AND LIMIT POINTS  

Definition 0.6.1. A subset A of a topological space X 

is said to be closed if the set X − A is open.  

Theorem 0.6.2. Let X be a topological space.  Then 

the following conditions  

hold:  

(1) ∅ and X are closed.  

(2) Arbitrary intersections of closed sets are closed.  

(3) Finite unions of closed sets are closed.  

 

 

Proof. (1) ∅ and X are closed because they are the complements of 

the open 

set X and ∅ respectively. 

(2) Consider a collection of closed sets {Aα}α∈J , we apply De Morgan‘s 

law, 

 

 

X − I   Aα = U  (X − Aα) 
       α∈J          α∈J  

Since the sets X − Aα are open. By definition of closed sets, the right 
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side of this equation represents an arbitrary union of open sets and is 

thus open. Therefore, I Aα is closed.  

 

(3) Similarly, if Ai is closed for i = 1, 2, _ _ _ , n. Consider the equation  
 
 
 
 

n           n 

X − U  Ai I    = (X − Ai) 
i=1      i=1 

 

The set on the right side of this equation is a finte intersection of 

open sets and  

is therefore open.  
                  n 

Hence U     Ai is closed. 
    i=1     

Definition 0.6.3. If Y  is a subspace of X , we say that a set A is 

closed in Y if A is a subset of Y  and if A is closed in the subspace 

topology of Y (that is, if Y − A is open in Y ).  

Theorem 0.6.4. Let Y be a subspace of X . Then a set A is closed in 

Y if and only if it equals the intersection of a closed set of X with Y .  

Proof.  Assume that A = C ∩Y , where C is closed in X . Then X −C is 

open in X, so that (X − C ) ∩ Y is open in Y . By the definition of the 

subspace topology, but (X − C ) ∩ Y = Y − A. Hence Y − A is open in Y , 

so that A is closed in Y . Conversely, assume that A is closed in Y . 

Then Y −A is open in Y . By definition, it equals the intersection of an 

open set U of X with Y . The set X − U is closed in X and A = Y ∩ (X − 

U ). Hence A equals the intersection of a closed set of X with Y .  

Theorem 0.6.5. Let Y be a subspace of X . If A is closed in Y and Y 

is closed in X , then A is closed in X .  

Proof.  Given A is closed in Y and Y is closed in X . Since A is closed 

in Y and Y is a subspace of X,  

let A = Y ∩ (X − B) where X − B is open in X . Then B is closed in X . 
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Since Y and B are both closed in X . Then Y ∩ (X − B) is closed in X . 

Therefore, A is closed in X .  

Definition 0.6.6. Given a subset A of a topological space X , the 

interior of A is defined as the union of all open sets contained in A, 

and the closure of A is defined as the intersection of all closed sets 

containing A.  

The interior of A is denoted by Int A and the closure of A is denoted 

by Cl A or by A . Obviously Int A is an open set and A  is a closed 

set; furthermore,  

 

Int A ⊂ A ⊂ A .  

 

If A is open, A=Int A; while if A is closed, A  = A.  

Theorem 0.6.7. Let Y be a subspace of X ; let A be a subset of Y ; let 

A  denote the closure of A in X . Then the closure of A in Y equals A ∩ 

Y .  

Proof.  Let B denote the closure of A in Y . The set A is closed in X , so 

A ∩Y is closed in Y . By 0.6.4, since A ∩ Y contains A and since B is 

closed. By definition B equals the intersection of all closed subsets of  

Y  containing A, we must have B C (A ∩ Y ).  

On the otherhand, we know that B is closed in Y .  By 0.6.4, B = C 

∩ Y  for some set C closed in X .  Then C is a closed set of X 

containing A; because A is the intersection of all such closed sets, 

we conclude that A ⊂ C .  Then (A ∩ Y ) ⊂ (C ∩ Y ) = B. Therefore, B 

= A ∩ Y .  

 

Theorem 0.6.8. Let A be a subset of the topological space X .  

(a) Then x ∈ A if and only if every open set U containing x intersects 
A.  

(b) Supposing the topology of X is given by a basis, then x ∈ A if 

and only if every basis element B containing x intersects A.  
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Proof. (a)We prove this theorem by contrapositive method.  

If x is not in A, since A is closed, A  = A.  The set U = X − A  is an 

open set containing x that does not intersect A.  

Conversely, if there exists an open set U containing x which does 

not intersect  

A. Then X − U is a closed set containing A.  

By definition of the closure of A, the set X − U must contain A, 

since x ∈ U . Therefore, x cannot be in A.  

(b) Write the definition of topology generated by basis, if every open 

set in X inter- 

sects A, so does every basis element B containing x, because B is an 

open set.  

Conversely, if every basis element containing x intersects A, so does 

every open  

set U containing x, because U contains a basis element that contains 

x.   

Definition 0.6.9. If A is a subset of the topological space X and if x 

is a point of X , we say that x is a limit point (or ‖cluster point‖ or 

‖point of accumulation‖) of A if every neighborhood of x intersects 

A in some point other than x itself. Said differently, x is a limit 

point of A if it belongs to the closure of A − {x}. The point x may 

lie in A or not; for this definition it does not matter.  

Theorem 0.6.10. Let A be a subset of the topological space X ; let A′ 

be the set of all limit points of A. Then A  = A ∪ A′ .  

Proof.  Let A′ be the set of all limit points of A.  

If x ∈ A′ , every neighborhood of x intersects A in a point different 

from x. By 0.6.8, x ∈ A. Then A′ ⊂ A.  

By definition of closure, A ⊂ A . Therefore, A ∪ A′ ⊂ A .  

Conversely, let x ∈ A  

To show that A  ⊂ A ∪ A′  

If x ∈ A then it is trivially true for x ∈ A ∪ A′ .  
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Suppose x  A. Since x ∈ A, by 0.6.8, we know that every 

neighborhood U of x intersects A, because x  A, the set U must 

intersect A in a point different from  

x. Then x ∈ A′ so that x ∈ A ∪ A′ .  

Then A  ⊂ A ∪ A′ .  

Therefore, A  = A ∪ A′ .  

Corollary  0.6.11. A subset of a topological space is closed if 

and only if it contains all its limit points.  

 

Proof.  The set A is closed if  A  = A. By 0.6.10, A′ ⊂ A. Therefore 

A contqain all its limit P points. Conversely, Suppose A C A. 

Then AACA. Then true A  C A. But A A  : A  A. Therefore A 

is   

Definition 0.6.12. A topological space X is called a Hausdorff  

space if for each pair x1, x2 of distinct points of X , there exist 

neighborhoods U1 and U2 of x1 and x2 respectively, that are disjoint.  

 

Theorem 0.6.13. Every finite point set in a Hausdorff  space X is 

closed.  

 

 

Proof.  It is enough to show that every one-point set {x0} is closed.  

If x is a point of X different from x0, then x and x0 have disjoint 

neighborhoods U and V respectively.  

Since U does not intersect {x0}, the point x cannot belong to the 

closure of the set {x0}.  

As a result, the closure of the set {x0} is {x0} itself.  

Therefore, {x0} is closed.  

Note: The condition that finite point sets be closed is in fact 

weaker than the Hausdro  condition. For example, the real line R in 

the finite complement topology is not a Hausdor  space, but it is a 

space in which finite point sets are closed.  The condition that finite 
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point sets be closed has been given a name of its own; it is called the 

T1 axiom.  

 

Theorem 0.6.14. Let X be a space satisfying the T1 axiom; let A be a 

subset of  

X. Then the point x is a limit point of A if and only if every 

neighborhood of x contains infinitely many points of A.  

Proof.  If every neighborhood of x intersects A in infinitely many 

points, it cer- 

tainly intersects A in some point other than x itself, so that x is a 

limit point of  

A.  

Conversely, suppose that x is a limit point of A and suppose some 

neighborhood U of x intersects A in only finitely many points.  

Let {x1, x2, _ _ _ , xm } be the points of U ∩ (A − {x}).  

The set X − {x1, x2, _ _ _ , xm} is an open set of X , since the finite 

point set {x1, x2, _ _ _ , xm } is closed then  

 

U ∩ (X − {x1, x2, _ _ _ , xm})  

is a neighborhood of x that does not intersect the set A−{x}. Since {x1, x2, _ 

_ _ , xm} be points of U ∩ (A − {x}).  

This contradicts the assumption that x is a limit point of A.  

Theorem 0.6.15. If X is a Hausdorff  space, then a sequence of 

points of X converges to at most one point of X .  

 

Proof.  Suppose that xn is a sequence of points of X that converges 

to x.  

If y 6= x, let U and V be disjoint neighborhoods of x and y respectively. 

Since U contains xn for all but finitely many values of n, the set V  

cannot contains xn. Therefore,xn cannot converge.  

If the sequence xn of points of the Hausdorff  space X converges to 

the point x of X, we often write xn → x.  
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Therefore, x is the limit of the sequence xn.  

Theorem 0.6.16. Every simply ordered set is a Hausdorff  space 

in the order topology. The product of two Hausdorff  spaces is a 

Hausdorff  space. A subspace of a Hausdorff  space is a Hausdorff  

space.  

Proof.  Let X and Y be two Hausdorff  spaces. To prove X × Y is 

Hausdorff .  

Let x1 × y1 and x2 × y2 be two distinct points of X × Y . Then x1, x2 are 

distinct points of X and X is a Hausdorff  space, there exists 

neighborhood U1 and U2 of x1 and x2 such that U1 ∩ U2 = ∅  

Similarly, y1 , y2 are distinct point of Y  and Y  is a Hausdor  space, 

there exists neighborhood V1 and V2 of y1 and y2 such that V1 ∩ V2 = ∅.  

Then clearly U1 × V1 and U2 × V2 are open sets in X × Y containing x1 × 
y1 and  

x2 × y2 such that (U1 × V1) ∩ (U2 × V2) = ∅.  

Therefore, X × Y is a Hausdorff  space.  

Let X be a Hausdorff  space and let Y be a subspace. To prove Y is a 

Hausdorff  space.  

Let y1, y2 be two distinct points of Y . Then y1 and y2 are distinct 

points in X and X is Hausdorff  there exists neighborhood U1 and U2 of 

y1 and y2 such that U1 ∩U2 = ∅. Then U1 ∩Y and U2 ∩Y are distinct 

neighborhood 

of y1 and y2 in Y .  

Therefore, Y is a Hausdorff  space. 

 

Check In Progress-II 

Q. 1 Define Closed Set . 

Solution : 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 
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Q. 2 Define Subspace Topology. 

Solution : 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

……………………………………………………………………… 

 

4.7 SUBBASE 

In topology, a subbase (or subbasis) for a topological 

space X with topology T is a subcollection B of T that generates T, in the 

sense that T is the smallest topology containing B. A slightly different 

definition is used by some authors, and there are other useful equivalent 

formulations of the definition; these are discussed below. 

Let X be a topological space with topology T. A subbase of T is usually 

defined as a subcollection B of T satisfying one of the two following 

equivalent conditions: 

1. The subcollection B generates the topology T. This means that T is the 

smallest topology containing B: any topology T' on X containing B must 

also contain T. 

2. The collection of open sets consisting of all finite intersections of 

elements of B, together with the set X, forms a basis for T. This means 

that every proper open set in T can be written as a union of finite 

intersections of elements of B. Explicitly, given a point x in an open 

set U ⊆ X, there are finitely many sets S1, …, Sn of B, such that the 

intersection of these sets contains x and is contained in U. 

(Note that if we use the nullary intersection convention, then there is no 

need to include X in the second definition.) 

For any subcollection S of the power set P(X), there is a unique topology 

having S as a subbase. In particular, the intersection of all topologies 

on X containing S satisfies this condition. In general, however, there is no 

unique subbasis for a given topology. 

Thus, we can start with a fixed topology and find subbases for that 

topology, and we can also start with an arbitrary subcollection of the 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Basis_(topology)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Nullary_intersection
https://en.wikipedia.org/wiki/Power_set
https://en.wikipedia.org/wiki/Intersection_(set_theory)
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power set P(X) and form the topology generated by that subcollection. 

We can freely use either equivalent definition above; indeed, in many 

cases, one of the two conditions is more useful than the other. 

Alternative Definition 

Sometimes, a slightly different definition of subbase is given which 

requires that the subbase B cover X.
[1]

 In this case, X is the union of all 

sets contained in B. This means that there can be no confusion regarding 

the use of nullary intersections in the definition. 

However, with this definition, the two definitions above are not always 

equivalent. In other words, there exist spaces X with topology T, such 

that there exists a subcollection B of T such that T is the smallest 

topology containing B, yet B does not cover X. In practice, this is a rare 

occurrence; e.g. a subbase of a space that has at least two points and 

satisfies the T1 separation axiom must be a cover of that space. 

Examples 

The usual topology on the real numbers R has a subbase consisting of 

all semi-infinite open intervals either of the form (−∞,a) or (b,∞), 

where a and b are real numbers. Together, these generate the usual 

topology, since the intersections (a,b) = (−∞,b) ∩ 

(a,∞) for a < b generate the usual topology. A second subbase is formed 

by taking the subfamily where a and b are rational. The second subbase 

generates the usual topology as well, since the open 

intervals (a,b) with a, b rational, are a basis for the usual Euclidean 

topology. 

The subbase consisting of all semi-infinite open intervals of the 

form (−∞,a) alone, where a is a real number, does not generate the usual 

topology. The resulting topology does not satisfy the T1 separation 

axiom, since all open sets have a non-empty intersection. 

The initial topology on X defined by a family of functions fi : X → Yi, 

where each Yi has a topology, is the coarsest topology on X such that 

each fi is continuous. Because continuity can be defined in terms of the 

inverse images of open sets, this means that the initial topology on X is 

https://en.wikipedia.org/wiki/Subbase#cite_note-1
https://en.wikipedia.org/wiki/T1_separation_axiom
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Semi-infinite
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/T1_space
https://en.wikipedia.org/wiki/T1_space
https://en.wikipedia.org/wiki/Initial_topology
https://en.wikipedia.org/wiki/Continuous_(topology)
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given by taking all fi
−1

(U), where U ranges over all open subsets of Yi, as 

a subbasis. 

Two important special cases of the initial topology are the product 

topology, where the family of functions is the set of projections from the 

product to each factor, and the subspace topology, where the family 

consists of just one function, the inclusion map. 

The compact-open topology on the space of continuous functions 

from X to Y has for a subbase the set of functions 

where K ⊆ X is compact and U is an open subset of Y. 

 

Results using subbase 

One nice fact about subbases is that continuity of a function need only be 

checked on a subbase of the range. That is, if B is a subbase for Y, a 

function  f  : X → Y is continuous iff  f 
−1

(U) is open in X for each U in B. 

 

4.8 ALEXANDER SUBBASE THEOREM 

There is one significant result concerning subbases, due to James 

Waddell Alexander II. 

Alexander Subbase Theorem. Let X be a topological space with a 

subbasis B. If every cover by elements from B has a finite subcover, then 

the space is compact. 

Note that the corresponding result for basic covers is trivial. 

Proof Outline: Assume by way of contradiction that the space X is not 

compact, yet every subbasic cover from B has a finite subcover. 

Use Zorn's Lemma to find an open cover C without finite subcover that 

is maximal amongst such covers. That means that if V is an open set 

of X which is not in C, then C ∪ {V} has a finite subcover, necessarily of 

the form {V} ∪ CV , where the choice of the finite subset CV of the 

cover C depends on the picked additional set V . 

Consider C ∩ B, that is, the subbasic subfamily of C. We 

claim C ∩ B does not cover X. If it covered X, then it would be a cover 

from elements of B and by hypothesis on B, it would have a finite 

https://en.wikipedia.org/wiki/Product_topology
https://en.wikipedia.org/wiki/Product_topology
https://en.wikipedia.org/wiki/Subspace_topology
https://en.wikipedia.org/wiki/Inclusion_map
https://en.wikipedia.org/wiki/Compact-open_topology
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Continuity_(topology)
https://en.wikipedia.org/wiki/Iff
https://en.wikipedia.org/wiki/James_Waddell_Alexander_II
https://en.wikipedia.org/wiki/James_Waddell_Alexander_II
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Zorn%27s_Lemma
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subcover from C ∩ B which is at the same time also a finite subcover 

from C. But from definition of C ,C does not have a finite subcover of X, 

so C ∩ B does not cover X. So there exists an element x from X but 

uncovered by C ∩ B. C covers X (with infinite number of open sets), 

so x ∈ U for some U ∈ C. B is a subbasis, so for some S1, ..., Sn ∈ B, we 

have: x ∈ S1∩ ··· ∩Sn ⊆ U. 

Since x is uncovered by C ∩ B, Si ∉ C for each i. (If Si ∈ C for some i, 

then it would hold Si ∈ C ∩ B and since x ∈ Si, C ∩ B would also cover 

point x, contrary to its choice). As noted above from the maximality of 

the cover C, for each i there exists a finite subset CSi of cover C such 

that {Si} ∪ CSi forms a finite cover of X. Let's denote CF the finite union 

of the finite sets CSi where i iterates from 1 to n. Then for each i the 

former finite cover of X can be replaced by a new bigger and still finite 

cover {Si} ∪ CF of X. The finite set {Si} ∪ CF covers X for each i, so 

also {S1∩ ··· ∩Sn} ∪ CF covers X. The intersection in the cover can be 

replaced by the single bigger open set U from cover C. So {U}∪CF is 

also a finite cover of X and made of the open sets only from C. 

Thus C has a finite subcover of X, in contradiction to the choice of C. 

Therefore the original assumption of X not being compact is wrong due 

to a contradiction we reached. Therefore X is compact. Q.E.D. 

Although this proof makes use of Zorn's Lemma, the proof does not need 

the full strength of choice. Instead, it relies on the intermediate Ultrafilter 

principle. 

Using this theorem with the subbase for R above, one can give a very 

easy proof that bounded closed intervals in R are compact. 

Tychonoff's theorem, that the product of compact spaces is 

compact, also has a short proof. The product topology on ∏i Xi has, by 

definition, a subbase consisting of cylinder sets that are the inverse 

projections of an open set in one factor. Given a subbasic family C of the 

product that does not have a finite subcover, we can partition C = 

∪i Ci into subfamilies that consist of exactly those cylinder sets 

corresponding to a given factor space. By assumption, no Ci has a finite 

subcover. Being cylinder sets, this means their projections onto Xi have 

no finite subcover, and since each Xi is compact, we can find a 

https://en.wikipedia.org/wiki/Q.E.D.
https://en.wikipedia.org/wiki/Zorn%27s_Lemma
https://en.wikipedia.org/wiki/Ultrafilter_principle
https://en.wikipedia.org/wiki/Ultrafilter_principle
https://en.wikipedia.org/wiki/Tychonoff%27s_theorem
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point xi ∈ Xi that is not covered by the projections of Ci onto Xi. But 

then (xi)i ∈ ∏i Xi is not covered by C. 

Note, that in the last step we implicitly used the axiom of choice (which 

is actually equivalent to Zorn's lemma) to ensure the existence of (xi)i. 

 

4.9. TOPOLOGICAL BASIS AND SUB-

BASIS 
 

Definition 1 Topological space X is a set with a specific collection T 

of subsets called open sets with the following properties. 

 1. ∅, X ∈ T .  

2. A union of open sets is open.  

3. A finite intersection of open sets is open.  

Examples 1. A metric space with the usual open sets.  

2. Let X be a set. Then T = P(X) is called the discrete topology and T = 

{∅, X} the indiscrete topology.  

3. X = {a, b}. Then T = {∅, X, {a}} is a topology.  

4. Let X be an infinite set. Then T = {U ⊂ X|U c is a f inite set} ∪ {∅} is 

called cofinite topology.  

Definition 2 Let X and Y be topological spaces. Then f : X → Y is 

continuous if f −1 (V ) is open for all V open in Y .  

Definition 3 A collection B of open sets of a topological space X is 

called a basis if each open set in X can be represented as a union of 

elements of B.  

Proposition 1 Suppose that a collection B of subsets of a set X 

satisfies the following two properties:  

1. The elements of B cover X, i.e., X = ∪B∈BB.  

https://en.wikipedia.org/wiki/Axiom_of_choice
https://en.wikipedia.org/wiki/Zorn%27s_lemma
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2. If x belongs to two elements B1 and B2 of B, then there exists B ∈ B 

such that x ∈ B ⊂ B1 ∩ B2. Then the collection T (B) of all unions of 

elements of B defines a topology on a set X(called the topology 

generated by B). Proof is easy.  

Examples 1. Let B = {(a, b)|a < b, a and b real}. Then (R, T (B)) is 

called the usual topology of R. 

 2. Let B = {[a, b)|a < b, a and b real}. Then Rl = (R, T (B)) is called the 

real line with half-open topology. 1 3. Let B = {[a, b]|a ≤ b, a and b real}. 

Then (R, T (B)) becomes a discrete space since [a, a] = {a}.  

Proposition 2 Let B and B 0 be basis for the topology T and T 0 , 

respectively on X. Then T ⊂ T 0 if and only if for each B ∈ B and x ∈ B, 

there is a basis element B 0 ∈ B0 such that x ∈ B 0 ⊂ B. In this case, T 0 

is said to be finer than T . Proof (⇒) For each B in B, B ∈ B ⊂ T (B) ⊂ T 

(B 0 ). Therefore B ∈ T (B 0 ). Since T (B 0 ) is generated by B 0 , for 

each x ∈ B there is an element B 0 ∈ B0 such that x ∈ B 0 ⊂ B. (⇐) Let 

U be an element of T and x ∈ U. Since B generates T , there is an 

element B ∈ B such that x ∈ B ⊂ U. Then there is B 0 such that x ∈ B 0 

⊂ B ⊂ U and hence U ∈ T 0 .  

Examples 1. Let B = {(a, b)|a < b, a and b real} and B 0 = {[a, b)|a < 

b, a and b real}. Then T (B) T (B 0 )  

3. Let B be the collection of all open discs in the plane and B 0 is the 

collection of open squares. Then T = T 0 Homework  

4. 3 Let C([0, 1]) be the collection of continuous functions on [0, 1]. 

Consider the following topologies. T1 = the topology induced by L1 

norm, i.e., kfk1 = R 1 0 |f| T2 = the topology induced by L2 norm, i.e., 

kfk2 = (R 1 0 |f| 2 ) 1/2 T∞ = the topology induced by L∞ norm, i.e., 

kfk∞ = sup|f| stopology[þt_ • ©œ ñŸí†\¦ [O"î .  

Definition 4 Let X be a topological space. A collection S of open sets 

is called a subbasis if each open set in X can be written as a union of 

finite intersections of elements of S.  
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Proposition 3 Let S be a collection of subsets of a set X whose union 

is X. Then the collection of all unions of finite intersections of sets in S 

form a topology for X. This topology T (S) will be called the topology 

generated by S, and T (S) is the smallest topology containing S. (Proof is 

easy using Prop 1.)  

Examples 1. S = {(a,∞),(−∞, b)} is a subbasis for the standard topology 

of R. 2 

 2. S = {[a,∞),(−∞, b)} is a subbasis for Rl . 

 3. S = {R − {p}|p ∈ R} is a subbasis for the cofinite topology. 

 

4.10 SUMMARY 
 

We study in this unit about subspace topology and its lemma. We study 

in this unit closed set and limit point of subspace topology. We study 

topological space of subspace topology.  

4.11 KEYWORD 
 

SUBSPACE : A space that is wholly contained in another space, or 

whose points or elements are all in another space 

SPACE : A continuous area or expanse which is free, available, or 

unoccupied 

TYCHONOFF‘S : A topological space is termed 

a Tychonoff space if it satisfies the following equivalent conditions 

 

4.12 EXERCISE 
 

Q. 1 A metric space with the usual open sets. 
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Q. 2 A subset of a topological space is closed if and only if it 

contains all its limit points 

Q. 3 The topologies of Rl and Rk are strictly finer than three standard 

topology on R, but are not comparable with one another. 

Q. 4 Let X be an ordered set in the order topology; let Y be a subset of 

X that is convex in X .  Then the order topology on Y  is the 

same as the topology Y inherits as a subspace of X 

Q. 5 If A is a subspace of X and B is a subspace of Y , then the 

product topology on A ×B is the same as the topology A ×B inherits as a 

subspace of X × Y . 

4.13 ANSWER FOR CHECK IN 

PROGRESS 

 

Check in Progress-I 

Answer  Q. 1 Check in Section 2 

              Q 2 Check in Section 3 

Check in Progress-II 

Answer  Q. 1 Check in Section 6 

              Q 2 Check in Section 5 
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5.0 OBJECTIVE 
 

 We learn in this unit boundary and exterior point in Euclidean 

Space 

 Learn open and closed set 

 Learn Exterior and Interior Operator 

 Learn Subspace terminology 

 Learn Identification Topology 

Learn boundary Topology 

 

5.1. INTRODUCTION  
 

Recall from the Interior, Boundary, and Exterior Points in Euclidean 

Space that if S⊆Rn then a point a∈S is called an interior point of S if 

there exists a positive real number r>0 such that the ball centered 

at a with radius r is a subset of S. 

Furthermore, a point a is called a boundary point of S if for every 

positive real number r>0 we have that there exists points x,y∈B(a,r) such 

that x∈S and y∈Sc. 

We will now generalize these definitions to metric spaces (M,d). 

 

Definition: Let (M,d) be a metric space and let S⊆M. A point a∈S is said 

 to be an Interior Point of S if there exists a positive real 

number r>0such  

that the ball centered at a with radius r with respect to the metric d is a 

subset  

of S, i.e., B(a,r)⊆S. The set of all interior points of S is called 

the Interior of S  

and is denoted int(S) 

In shorter terms, a point a∈S is an interior point of S if there exists a ball 

centered at a that is fully contained in S. Note that from the definition 

above we have that a point can be an interior point of a set only if that 

point is contained in S. Therefore int(A)⊆A. 

http://mathonline.wikidot.com/interior-boundary-and-exterior-points-in-euclidean-space
http://mathonline.wikidot.com/interior-boundary-and-exterior-points-in-euclidean-space
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Definition: Let (M,d) be a metric space and let S⊆M. A point a∈M is 

said to be a 

 Boundary Point of S if for every positive real number r>0we have that 

there exists  

points x,y∈B(a,r) such that x∈S and y∈Sc. The set of all boundary points 

is called  

the Boundary of S and is denoted ∂S or bdry(S). 

A point a∈M is said to be a boundary point of S if every ball centered 

at a contains points in S and points in the complement Sc. Notice that 

from the definition above that a boundary point of a set need not be 

contained in that set. 

 
 

5.2 INTERIOR POINTS, OPEN AND 

CLOSED SETS 

Let (X,d) be a metric space with distance d:X×X→[0,∞). 
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 A point x0∈D⊂X is called an interior point in D if there is a 

small ball centered at x0 that lies entirely in D, 

 x0 interior point ⟺def∃ε>0;Bε(x0)⊂D. 

 A point x0∈X is called a boundary point of D if any small ball 

centered at x0 has non-empty intersections with both D and its 

complement, 

x0 boundary point ⟺def∀ε>0∃x,y∈Bε(x0);x∈D,y∈X∖D. 

 The set of interior points in D constitutes its interior, int(D), and 

the set of boundary points its boundary, ∂D. D is said to 

be open if any point in D is an interior point and it is closed if its 

boundary ∂D is contained in D; the closure of D is the union 

of D and its boundary: 

D :=D∪∂D.  

Alternative notations for the closure of D in X include DX

,  clos(D) and clos(D;X).  

Example  

In R with the usual distance d(x,y)=|x−y|d(x,y)=|x−y|, the interval (0,1) is 

open, [0,1) neither open nor closed, and [0,1]closed.
2)

 

 The set 

D:={(x,y)∈R2:x>0,y≥0} 

https://wiki.math.ntnu.no/linearmethods/basicspaces/openandclosed#fn__2
https://wiki.math.ntnu.no/_media/linearmethods/basicspaces/innerpoints_boundarypoints.jpg


Notes 

114 

is neither closed nor open in Euclidean space R2 (metric coming from a 

norm, e.g., d(x,y)=∥x−y∥l2=[((x1−y1)+(x2−y2)2)]   ½, since its 

boundary contains both points (x,0), x>0, in D and 

points (0,y), y≥0y≥0, not in DD. The closure of D is 

D = x,y)∈R2:x≥0,y≥0}. 

 An entire metric space is both open and closed (its boundary is 

empty). 

 In l∞l∞, 

B1∋(1/2,2/3,3/4,…)∈B. B1∌(1/2,2/3,3/4,…)∈B1¯. 

 For a general metric space, the closed ball 

B~r(x0):={x∈X:d(x,x0)≤r} 

may be larger than the closure of a ball, Br(x0) .If we let X be a space 

with the discrete metric, 

d(x,x)=0,d(x,y)=1,x≠y. 

Then 

B1(x0)={x0}, so 

that B1(x0)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯={x0}¯¯¯¯¯¯¯¯¯¯={x0}.B1(x0)={x0}

, so that B1(x0)¯={x0}¯={x0}. 

But 

B~1(x0)=X.B~1(x0)=X. 

℘ (Open) balls are open 

Let (X,d)(X,d) be a metric space, x0x0 a point in XX, and r>0r>0. 

Then Br(x0)Br(x0) is open in XX with respect to the metric dd. 

 

Check in Progress-I 

Q 1. Define Interior Point.  
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Solution : 

……………………………………………………………………………

…. 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define Exterior Point.  

 

Solution . 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

5.3 INTERIOR (TOPOLOGY) 

 

The point x is an interior point of S. The point y is on the boundary of S. 

In mathematics, specifically in topology, the interior of a subset of 

a topological space is the union of all open subsets of that set. A point 

that is in the interior of S is an interior point of S. 

The interior of S is the complement of the closure of the complement 

of S. In this sense interior and closure are dual notions. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/General_topology
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Absolute_complement
https://en.wikipedia.org/wiki/Closure_(topology)
https://en.wikipedia.org/wiki/Duality_(mathematics)#Duality_in_logic_and_set_theory
https://en.wikipedia.org/wiki/File:Interior_illustration.svg
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The exterior of a set is the interior of its complement, equivalently the 

complement of its closure; it consists of the points that are in neither the 

set nor its boundary. The interior, boundary, and exterior of a subset 

together partition the whole space into three blocks (or fewer when one 

or more of these is empty). The interior and exterior are 

always openwhile the boundary is always closed. Sets with empty 

interior have been called boundary sets.
[1]

 

5.3.1 Interior Point 

If S is a subset of a Euclidean space, then x is an interior point of S if 

there exists an open ball centered at x which is completely contained 

in S. (This is illustrated in the introductory section to this article.) 

This definition generalizes to any subset S of a metric space X with 

metric d: x is an interior point of S if there exists r > 0, such that y is 

in S whenever the distance d(x, y) < r. 

This definition generalises to topological spaces by replacing "open ball" 

with "open set". Let S be a subset of a topological space X. Then x is an 

interior point of S if x is contained in an open subset of X which is 

completely contained in S. (Equivalently, x is an interior point of S if S is 

a neighbourhood of x.) 

5.3.2 Interior of a Set 

The interior of a set S is the set of all interior points of S. The interior 

of S is denoted int(S), Int(S) or S
o
. The interior of a set has the following 

properties. 

 int(S) is an open subset of S. 

 int(S) is the union of all open sets contained in S. 

 int(S) is the largest open set contained in S. 

 A set S is open if and only if S = int(S). 

 int(int(S)) = int(S) (idempotence). 

 If S is a subset of T, then int(S) is a subset of int(T). 

 If A is an open set, then A is a subset of S if and only if A is a subset 

of int(S). 

https://en.wikipedia.org/wiki/Boundary_(topology)
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Interior_(topology)#cite_note-1
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Open_ball
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Idempotent
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Sometimes the second or third property above is taken as 

the definition of the topological interior. 

Note that these properties are also satisfied if "interior", "subset", 

"union", "contained in", "largest" and "open" are replaced by "closure", 

"superset", "intersection", "which contains", "smallest", and "closed", 

respectively. For more on this matter, see interior operator below. 

EXAMPLES 

 

a is an interior point of M, because there is an ε-neighbourhood of a 

which is a subset of M. 

 In any space, the interior of the empty set is the empty set. 

 In any space X, if , then int(A) is contained in A. 

 If X is the Euclidean space  of real numbers, then int([0, 1]) = (0, 1). 

 If X is the Euclidean space , then the interior of the set  of rational 

numbers is empty.  

 In any Euclidean space, the interior of any finite set is the empty set. 

On the set of real numbers, one can put other topologies rather than the 

standard one. 

 If , where  has the lower limit topology, then int([0, 1]) = [0, 1). 

 If one considers on  the topology in which every set is open, then 

int([0, 1]) = [0, 1]. 

 If one considers on  the topology in which the only open sets are the 

empty set and  itself, then int([0, 1]) is the empty set. 

These examples show that the interior of a set depends upon the topology 

of the underlying space. The last two examples are special cases of the 

following. 

 In any discrete space, since every set is open, every set is equal to its 

interior. 

https://en.wikipedia.org/wiki/Interior_(topology)#Interior_operator
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Lower_limit_topology
https://en.wikipedia.org/wiki/Discrete_space
https://en.wikipedia.org/wiki/File:Set_of_real_numbers_with_epsilon-neighbourhood.svg
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 In any indiscrete space X, since the only open sets are the empty set 

and X itself, we have int(X) = X and for every proper subset A of X, 

int(A) is the empty set. 

5.3.3 Interior Operator 

The interior operator 
o
 is dual to the closure operator 

—
, in the sense that 

, 

and also, where X is the topological space containing S, and the 

backslash refers to the set-theoretic difference. 

Therefore, the abstract theory of closure operators and the Kuratowski 

closure axioms can be easily translated into the language of interior 

operators, by replacing sets with their complements. 

5.4 EXTERIOR OF A SET 

 

The exterior of a subset S of a topological space X, denoted ext(S) or 

Ext(S), is the interior int(X \ S) of its relative complement. Alternatively, 

it can be defined as X \ S
—

, the complement of the closure of S. Many 

properties follow in a straightforward way from those of the interior 

operator, such as the following. 

 ext(S) is an open set that is disjoint with S. 

 ext(S) is the union of all open sets that are disjoint with S. 

 ext(S) is the largest open set that is disjoint with S. 

 If S is a subset of T, then ext(S) is a superset of ext(T). 

Unlike the interior operator, ext is not idempotent, but the 

following holds: 

 ext(ext(S)) is a superset of int(S). 

https://en.wikipedia.org/wiki/Indiscrete_space
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Closure_(topology)
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Complement_(set_theory)
https://en.wikipedia.org/wiki/Kuratowski_closure_axioms
https://en.wikipedia.org/wiki/Kuratowski_closure_axioms
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5.4.1 Interior-Disjoint Shapes 

 

The red shapes are not interior-disjoint with the blue Triangle. The green and the 

yellow shapes are interior-disjoint with the blue Triangle, but only the yellow 

shape is entirely disjoint from the blue Triangle. 

Two shapes a and b are called interior-disjoint if the intersection of their 
interiors is empty. Interior-disjoint shapes may or may not intersect in 

their boundary. 

 

 

5.5 BOUNDARY (TOPOLOGY) 
 

A set (in light blue) and its boundary (in dark blue). 

In topology and mathematics in general, the boundary of a subset S of 

a topological space X is the set of points which can be approached both 

from S and from the outside of S. More precisely, it is the set of points in 

the closure of S not belonging to the interior of S. An element of the 

boundary of S is called a boundary point of S. The term boundary 

operation refers to finding or taking the boundary of a set. Notations used 

for boundary of a set S include bd(S), fr(S), and ∂S. Some authors (for 

example Willard, in General Topology) use the term frontier instead of 

boundary in an attempt to avoid confusion with the concept of boundary 

used in algebraic topology and manifold theory.
[further explanation 

needed]
 Despite widespread acceptance of the meaning of the terms 

boundary and frontier, they have sometimes been used to refer to other 

sets. For example, the term frontier has been used to describe 

the residue of S, namely S  \ S (the set of boundary points not in S).
[citation 

needed]
 Hausdorff

[1]
 named the intersection of Swith its boundary 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Closure_(topology)
https://en.wikipedia.org/wiki/Interior_(topology)
https://en.wikipedia.org/wiki/%E2%88%82
https://en.wikipedia.org/wiki/Algebraic_topology
https://en.wikipedia.org/wiki/Manifold_theory
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Boundary_(topology)#cite_note-1
https://en.wikipedia.org/wiki/File:Interior-disjoint.svg
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the border of S (the term boundary is used to refer to this set in Metric 

Spaces by E.T. Copson). 

A connected component of the boundary of S is called a boundary 

component of S. 

If the set consists of isolated points only, then the set has only a 

boundary and no interior. 

 

There are several common (and equivalent) definitions to the boundary 

of a subset S of a topological space X: 

 the closure of S without the interior of S: ∂S = S  \ S
o
. 

 the intersection of the closure of S with the closure of 

its complement: ∂S = S ∩ (X \ S). 

 the set of points p of X such that every neighborhood of p contains at 

least one point of S and at least one point not of S. 

Examples 

 

Boundary of hyperbolic components of Mandelbrot set 

Consider the real line R with the usual topology (i.e. the topology 

whose basis sets are open intervals). One has 

 ∂(0,5) = ∂[0,5) = ∂(0,5] = ∂[0,5] = {0,5} 

 ∂∅ = ∅ 

 ∂Q = R 

 ∂(Q ∩ [0,1]) = [0,1] 

https://en.wikipedia.org/wiki/Connected_space#Formal_definition
https://en.wikipedia.org/wiki/Complement_(set_theory)
https://en.wikipedia.org/wiki/Neighborhood_(topology)
https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Basis_(topology)
https://en.wikipedia.org/wiki/Open_interval
https://en.wikipedia.org/wiki/File:Mandelbrot_Components.svg
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These last two examples illustrate the fact that the boundary of a dense 

set with empty interior is its closure. 

In the space of rational numbers with the usual topology (the subspace 

topology of R), the boundary of , where a is irrational, is empty. 

The boundary of a set is a topological notion and may change if one 

changes the topology. For example, given the usual topology on R
2
, the 

boundary of a closed disk Ω = {(x,y) | x
2
 + y

2
 ≤ 1} is the disk's 

surrounding circle: ∂Ω = {(x,y) | x
2
 + y

2
 = 1}. If the disk is viewed as a 

set in R
3
 with its own usual topology, i.e. Ω = {(x,y,0) | x

2
 + y

2
 ≤ 1}, then 

the boundary of the disk is the disk itself: ∂Ω = Ω. If the disk is viewed 

as its own topological space (with the subspace topology of R
2
), then the 

boundary of the disk is empty. 

Properties 

 The boundary of a set is closed.
[2]

 

 The boundary of the interior of a set as well as the boundary of the 

closure of a set are both contained in the boundary of the set. 

 A set is the boundary of some open set if and only if it is closed 

and nowhere dense. 

 The boundary of a set is the boundary of the complement of the set: 

∂S = ∂(S
C
). 

 The interior of the boundary of a closed set is the empty set. 

Hence: 

 p is a boundary point of a set if and only if every neighborhood 

of p contains at least one point in the set and at least one point not in 

the set. 

 A set is closed if and only if it contains its boundary, and open if and 

only if it is disjoint from its boundary. 

 The closure of a set equals the union of the set with its boundary. S

= S ∪ ∂S. 

 The boundary of a set is empty if and only if the set is both closed 

and open (that is, a clopen set). 

 The interior of the boundary of the closure of a set is the empty set. 

https://en.wikipedia.org/wiki/Dense_set
https://en.wikipedia.org/wiki/Dense_set
https://en.wikipedia.org/wiki/Subspace_topology
https://en.wikipedia.org/wiki/Subspace_topology
https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Boundary_(topology)#cite_note-2
https://en.wikipedia.org/wiki/Nowhere_dense
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Clopen_set
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Figure 5.1 

Conceptual Venn diagram showing the relationships among different 

points of a subset S of R
n
. A = set of limit points of S, B = set 

of boundary points of S, area shaded green = set of interior points of S, 

area shaded yellow = set of isolated points of S, areas shaded black = 

empty sets. Every point of S is either an interior point or a boundary 

point. Also, every point of S is either an accumulation point or an 

isolated point. Likewise, every boundary point of S is either an 

accumulation point or an isolated point. Isolated points are always 

boundary points. 

5.5.1 Boundary of a Boundary 

For any set S, ∂S ⊇ ∂∂S, with equality holding if and only if the 

boundary of S has no interior points, which will be the case for example 

if S is either closed or open. Since the boundary of a set is closed, ∂∂S = 

∂∂∂S for any set S. The boundary operator thus satisfies a weakened 

kind of idempotence. 

In discussing boundaries of manifolds or simplexes and their simplicial 

complexes, one often meets the assertion that the boundary of the 

boundary is always empty. Indeed, the construction of the singular 

homologyrests critically on this fact. The explanation for the apparent 

incongruity is that the topological boundary (the subject of this article) 

is a slightly different concept from the boundary of a manifold or of a 

simplicial complex. For example, the boundary of an open disk viewed 

as a manifold is empty, while its boundary in the sense of topological 

space is the circle surrounding the disk. 

https://en.wikipedia.org/wiki/Concept
https://en.wikipedia.org/wiki/Venn_diagram
https://en.wikipedia.org/wiki/Limit_point
https://en.wikipedia.org/wiki/Interior_points
https://en.wikipedia.org/wiki/Isolated_point
https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#Set_relations
https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Simplicial_complex
https://en.wikipedia.org/wiki/Simplicial_complex
https://en.wikipedia.org/wiki/Singular_homology
https://en.wikipedia.org/wiki/Singular_homology
https://en.wikipedia.org/wiki/File:Accumulation_And_Boundary_Points_Of_S.PNG
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5.6 SUBSPACE TOPOLOGY 

 

In topology and related areas of mathematics, a subspace of a topological 

space X is a subset S of X which is equipped with a topology induced 

from that of X called the subspace topology (or the relative topology, or 

the induced topology, or the trace topology). 

GIVEN A TOPOLOGICAL SPACE  AND A SUBSET  OF , 

THE SUBSPACE TOPOLOGY ON  IS DEFINED BY 

 

That is, a subset of  is open in the subspace topology if and only if it is 

the intersection of  with an open set in . If  is equipped with the subspace 

topology then it is a topological space in its own right, and is called 

a subspace of . Subsets of topological spaces are usually assumed to be 

equipped with the subspace topology unless otherwise stated. 

Alternatively we can define the subspace topology for a subset  of  as 

the coarsest topology for which the inclusion map is continuous.  

More generally, suppose  is an injection from a set  to a topological 

space . Then the subspace topology   is defined as the coarsest topology 

for which  is continuous. The open sets in this topology are precisely the 

ones of the form  for  open in .  is then homeomorphic to its image 

in  (also with the subspace topology) and  is called a topological 

embedding. 

A subspace  is called an open subspace if the injection  is an open map, 

i.e., if the forward image of an open set of  is open in . Likewise it is 

called a closed subspace if the injection  is a closed map. 

 

5.6.1 Terminology 

The distinction between a set and a topological space is often blurred 

notationally, for convenience, which can be a source of confusion when 

one first encounters these definitions. Thus, whenever  is a subset of , 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Coarsest_topology
https://en.wikipedia.org/wiki/Inclusion_map
https://en.wikipedia.org/wiki/Continuous_(topology)
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Homeomorphic
https://en.wikipedia.org/wiki/Topological_embedding
https://en.wikipedia.org/wiki/Topological_embedding
https://en.wikipedia.org/wiki/Open_map
https://en.wikipedia.org/wiki/Closed_map
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and  is a topological space, then the unadorned symbols "" and "" can 

often be used to refer both to  and  considered as two subsets of , and 

also to  and  as the topological spaces, related as discussed above. So 

phrases such as " an open subspace of " are used to mean that  is an open 

subspace of , in the sense used below -- that is that: (i) ; and (ii)  is 

considered to be endowed with the subspace topology. 

EXAMPLES 

In the following,  represents the real numbers with their usual topology. 

 The subspace topology of the natural numbers, as a subspace of , is 

the discrete topology. 

 The rational numbers  considered as a subspace of  do not have the 

discrete topology ({0} for example is not an open set in ). If a and b are 

rational, then the intervals (a, b) and [a, b] are respectively open and 

closed, but if a and b are irrational, then the set of all 

rational x with a < x < b is both open and closed. 

 The set [0,1] as a subspace of  is both open and closed, whereas as a 

subset of  it is only closed. 

 As a subspace of R1 , [0, 1] ∪ [2, 3] is composed of two 

disjoint open subsets (which happen also to be closed), and is therefore 

a disconnected space. 

 Let S = [0, 1) be a subspace of the real line . Then [0, 1/2) is open 

in S but not in . Likewise [½, 1) is closed in S but not in R . S is both 

open and closed as a subset of itself but not as a subset of  R. 

PROPERTIES 

The subspace topology has the following characteristic property. Let  be 

a subspace of and let  be the inclusion map. Then for any topological 

space  a map  is continuous if and only if the composite map  is 

continuous. 

 

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Discrete_topology
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Disconnected_space
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/File:Subspace-01.png
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This property is characteristic in the sense that it can be used to define 

the subspace topology on . 

We list some further properties of the subspace topology. In the 

following let  be a subspace of . 

 If  is continuous the restriction to  is continuous. 

 The closed sets in  are precisely the intersections of  with closed sets 

in . 

 If  is a subspace of  then  is also a subspace of  with the same topology. 

In other words the subspace topology that  inherits from  is the same as 

the one it inherits from . 

 Suppose  is an open subspace of  (so ). Then a subset of  is open 

in  if and only if it is open in . 

 Suppose  is a closed subspace of  (so ). Then a subset of  is closed 

in  if and only if it is closed in . 

 If  is a basis for  then  is a basis for . 

 The topology induced on a subset of a metric space by restricting 

the metric to this subset coincides with subspace topology for this 

subset. 

5.6.2 The Subspace Topology 

We now consider some ways of getting new topologies from old ones. 

Definition 

If A is a subset of a topological space (X, X), we define the subspace 

topology A on A by: 

B  A if B = A  C for some C  X . 

Examples 

1. Restricting the metric on a metric space to a subset gives this 

topology. 

For example, On X = [0, 1] with the usual metric inherited 

from R, the open sets are the intersection of [0, 1] with open sets 

of R. 

https://en.wikipedia.org/wiki/Basis_(topology)
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Metric_(mathematics)
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So, for instance, [1, 
1
/4) = (-1, 

1
/4)  [0, 1] and so is an open 

subset of the subspace X. 

Remark 

Note that as in this example, sets which are open in the subspace 

are not necessarily open in the "big space". 

2. The subspace topology on Z  R (with its usual topology/metric) 

is the discrete topology. 

3. The subspace topology on the x-axis as a subset of R
2
 (with its 

usual topology) is the usual topology on R. 

Remark 

If we take the inclusion map i: A  X then the subspace topology is 

the weakest topology (fewest open sets) on A in which this map is 

continuous. 

Proof 

If B  X is open then i
-1

(B) = A  B. 

 

5.6.3 The Product Topology 

Given topological spaces X and Y we want to get an appropriate topology 

on the Cartesian product X  Y. 

Obvious method 

Call a subset of X  Y open if it is of the form A  B with A open 

in X and B open in Y. 

Difficulty 

Taking X = Y = R would give the "open rectangles" in R
2
 as the open 

sets. These subsets are open, but unfortunately there are lots of other sets 

which are open too. 

We are therefore forced to work a bit differently. 

Definition 

A set of subsets  is a basis of a topology  if every open set in  is a 

union of sets of . 
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Example 

In any metric space the set  of all -neighbourhoods (for all different 

values of ) is a basis for the topology. 

Remark 

This is a very helpful concept. For example, to check that a function is 

continuous you need only verify that f
 -1 

(B) is open for all sets B in a 

basis -- usually much smaller than the whole collection of open sets. 

We can now define the topology on the product. 

Definition 

If X and Y are topological spaces, the product topology on X  Y is the 

topology whose basis is {A  B | A  X , B  Y}. 

Examples 

1. The topology on R
2
 as a product of the usual topologies on the 

copies of R is the usual topology (obtained from, say, the 

metric d2). 

Proof 

The sets of the basis are open rectangles, and an -

neighbouhood U in the metric d2 is a disc. It is easy to see that 

every point of U can be contained in a small open rectangle lying 

inside the disc. Hence U is a union of (infinitely many!) of these 

rectangles and hence is in the product topology. 

Since every open set in the d2 metric is a union of -

neighbourhoods, every open set can be written as a union of the 

open rectangles. 

 

2.  torus is the surface in R
3
: 

It can also be regarded as 

the product S
1
  S

1
 where S

1
 is a circle (the curve, not the 

interior) in R
2
. In this way it can be thought of as a subset of R

4
. 

The topology on S
1
 is the subspace topology as a subset of R

2
 and 
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so we get the product topology on S
1
  S

1
. 

Fortunately this is the same as the topology on the torus thought 

of as a subset of R
3
. 

Proof 

A basis for the subspace topology on S
1
 is the set of "arcs" 

Hence a basis for the product topology on S
1
  S

1
 is sets of the 

form: 

A basis for the subspace topology on the torus as a subset of R
3
 is 

the intersection of the torus with -neighbourhoods of R
3
 (which 

are "small balls") and hence are sets of the form: 

As before, one can get these "ovals" as unions of the small "bent 

rectangles". 

 

3. Take the topology  = { , {a, b}, {a} } on X = {a, b}. 

Then the product topology on X  X is { , X  X, {(a, a)}, 

{(a, a), (a, b)}, {(a, a), (b, a)}, {(a, a), (a, b), (b, a)} } where 

the last open set in the list is not in the basis. 

Remark 

Given any product of sets X  Y, there are projection 

maps X and Y from X  Y to X and to Y given by (x, y)  x and 

(x, y)  y. 

The product topology on X  Y is the weakest topology (fewest open 

sets) for which both these maps are continuous. 

5.6.4 The Identification Topology 

Recall that an equivalence relation ~ (a reflexive, symmetric, transitive 

relation) on a set X can be regarded as a method of partitioning X into 

disjoint subsets (called equivalence classes).  

We shall denote the set of equivalence classes by X/~. 

The identification or quotient topology gives a method of getting a 

topology on X/~ from a topology on X. 
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To see why we would want to do something like this, we will look at 

some examples. 

Examples 

1. Let X be the closed unit interval [0, 1]  R. 

Define an equvalence relation on X by x ~ y if and only if x = y or 

{x, y} = {0, 1}. 

Then every point is its own equivalence class, except for {0, 1} 

which forms one class. 

So this relation has the effect of "identifying" 0 and 1 and leaving 

everything else alone. 

What would we like the topology to look like? 

2. Let X = R and define ~ by x ~ y if and only if x - y  Z. 

Then X/~ is the set of cosets R/Z of the additive group. 

What would we like the topology to be? 

A clue comes from group theory. 

Define f: R  C - {0} by z  exp(2 t). Then ker(f) = Z and the 

image of f is the unit circle in the C-plane. 

Thus, by the First Isomorphism Theorem of group 

theory, R/Z  a circle and it would be a good idea to consider it 

with its subspace topology inherited from the plane. 

In fact these two examples are the same. To see this, take as a 

representative of each equivalence class (  coset) an element in [0, 1). 

Then every equivalence class has a unique representative, but one should 

arrange things so that classes with representatives close to 1 should be 

near the one with representative 0. 

So we fix the topology so that this happens. 

If we have an equivalence relation ~ on X we get a natural projection 

map : X  X/~ got by mapping each point to its equivalence class. 

Definition 
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The identification topology on X/~ is defined by: 

A set A  X/~ is open if and only if  
-1

(A) is open in X. 

Remarks 

1. This topology is the strongest (  most open sets) in which  is 

continuous. 

2. Note that  
-1

(A) consists of all those points whose equivalence 

classes are in A. 

Look again at the previous examples 

We have X = [0, 1] and  : X  X/~ identifying the end-points of the 

interval. If U is a set of X/~ containing the equivalence class {0, 1} 

then  
-1

 (U) contains both 0 and 1 and hence if it is open contains a set 

like   

So small open sets of X/~ ( -neighbourhoods) are "the same" as those 

of X except "at the end-points" where they look like the 

sets    made by "gluing together two bits". It is easy to see that this 

is the same as the subspace topology on the circle as a subset off the 

plane. 

Topologists like to consider spaces made by "shrinking a subset to a 

point". 

Notation 

If X is a topological space and A is a subset of X, we denote by X/A the 

equivalence classes X/~ under the relation x ~ y if x = y or x, y  A. 

So for x  A, {x} is an equivalence class and A is a single class. 

Examples 

1. The above example is [0, 1]/{0, 1} 

2. Let X be the closed unit disc and let A be the "boundary circle". 

Then X/A is homeomorphic to the unit sphere S
2
  R

3
. 

 

Proof 
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Look at the "teardrop" shown and "stereoscopic projection from 

the "point" P to a horizontal plane. The inverse image of an open 

set which contains the whole boundary is then an open set which 

contains P. Every other point is mapped in a one-one way. It is 

easy to verify that this map is a homeomorphism. 

 

Check In Progress-II 

 

Q 1. Define Product Topology.  

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define subspce topology.  

 

Solution . 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

 
 

5.6.6 More Identification Spaces 

A sphere (again) 

Start with a disc. Use an equivalence relation to identify 

points on the boundary as shown. 

That is, (x1 , y1) ~ (x2 , y2) if (x1 , y1) = (x2 , y2) or 

x1 = -x2 and y1 = y2 and x1
2
 + y1

2
 = 1 and x2

2
 + y2

2
 = 1. 

This is like folding a piece of pastry to make a "bridie" or "pastie" 
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A inverse image of a 

neighbourhood of a point in X/~ 

is like an ordinary 

neighbourhood for an interior 

point and is the union of a pair of "semi-discs" for a point on the 

boundary. 

 

A cylinder 

Glue the ends of a strip using the 

same equivalence relation used to 

make the circle from a closed 

interval. 

This space then gets the same topology as a subset of R
3
 , as a 

product S
1
  I and as an identification space. 

 

 

A Möbius band 

This was invented by the German mathematician August Möbius (1790 

to 1868) in 1858. 

"Glue" a strip as above, 

but this time after a half 

twist. 

Note that the "centre line" becomes a circle in R
3
. 

 

 

Remark 

One can make a cylinder by giving the strip a full twist before 

gluing. This produces something homeomorphic to the above 

cylinder but with an embedding in R
3
 in a very different way. 

You can see this by cutting the surface along the dotted line shown. 

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Mobius.html
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5.6.7 Separation Axioms 

We saw earlier how the ideas of convergence could be interpreted in a 

topological rather than a metric space:  

A sequence (ai) converges to  if every open set containing  contains 

all but a finite number of the {ai}. 

Unfortunately, this definition does not give some of thr "nice" properties 

we get in a metric space.  

For example, if a sequence in a metric space converges, it has a unique 

limit, but in a topological space this need not happen. For example, 

in R with the trivial topology every sequence converges to every point. 

To recove the nice properties of convergence we need to have "enough" 

open sets in the topology. Topologists have devised various separation 

axioms to classify how this happens. 

Definition 

A topological space X is called Hausdorff if every pair of points can be 

separated by open sets. 

That is, if x1  x2  X then there are disjoint open 

sets U1 and U2 with x1  U1 and x2  U2 . 

Remarks 

1. Felix Hausdorff (1869 to 1942) introduced this idea. He was also 

responsible for the first formulation of the idea of fractional 

dimension encountered in fractal Geometry. 

2. The Hausdorff condition is sometimes called T2 . This axiom is 

one of a number of separation axioms: T0 , T1 , T2 , T3 , T3
1

/2 , T4 .  

These were named by Heinreich Tietze (1880 to 1964) in 1923. 

The T stands for trennung (= separation in German). Some 

references call them the Tychonoff axioms after Andrei 

Tychonoff (1906 to 1993). 

Just for the record, T0 spaces are sometimes 

called Kolmogorov spaces, T1 spaces are 

called Fréchet spaces, T2 spaces are Hausdorff, T3 spaces 

are regular, T3
1
/2 spaces are completely regular. We will see 

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hausdorff.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Tietze.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Tychonoff.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Tychonoff.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Kolmogorov.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Frechet.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hausdorff.html


Notes 

134 

about T4 spaces shortly.  

See this link for more details. 

3. In a Hausdorff space, distinct points are "housed off" from one 

another by open sets. 

Remark 

It follows that every finite set is closed in a Hausdorff space and the 

topology is therefore stronger than the cofinite topology. 

The other separation axiom we will consider is: 

Definition 

A topological space X is called normal if every disjoint pair of closed 

sets can be separated by open sets. 

That is, if A1 and A2 are disjoint closed subsets of X then there 

are disjoint open sets U1 and U2 with A1  U1 and A2  U2 . 

Remark 

If every point is a closed set (that is T1) then such a normal space is 

Hausdorff. [normal + T1 = T4] 

Remark 

Note that the distance between disjoint closed sets may be 0 (but they can 

still be separated by open sets). 

Examples 

1. As above, all metric spaces are both Hausdorff and normal. 

2. The space X = {a, b} with  = { , X, {a} } is not Hausdorff 

since a, b cannot be separated by open sets. 

It is, however, normal since there are no non-empty disjoint 

closed sets. 

Remarks 

1. Finding a Hausdorff space which is not normal is possible, but 

tricky! 

http://www.math.toronto.edu/jjchew/math/topology/separation.html
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2. By demanding more separation axioms one gets closer to a metric 

space. Paul Urysohn (1898 to 1924) proved in 1923 that 

any T4 space with a countable basis is metrisable (that is, the 

topology may be obtained from a metric).  

In fact this is not a necessary condition for metrisability. For 

example, R with the discrete topology is metrisable but does not 

have a countable basis. Marshall Stone (1903 to 1989) and R H 

Bing (1914 to 1986) found a necessary and sufficient condition 

for metrisability in 1950. 

Example Topological Subspaces 
Recall from the Topological Subspaces page that if (X,η) is a topological 

space and A⊆X then the subspace topology on A is defined to be: 

(1) 

ηA={A∩U:U∈η} 

We verified that ηA is indeed a topology for any subset A of X. 

We will now look at some examples of subspace topologies. 

Example 1 
Consider the topological space (R2,η) where η is the usual topology of 

open disks in R2. Determine what the subspace topology is for the 

subset A={(x,0)∈R2:x∈R}⊆R2. 

Note that the set A={(x,0)∈R2:x∈R} is simply the real line R. 

Geometrically we can see that the subspace topology ηA will simply be 

the usual topology on R. 

To see this, consider any open set in R with respect to the usual topology 

of open intervals in R. Then any open interval (a,b) can be constructed 

by taking an open disk in R2 that intersects the line y=0 at the 

points (a,0), (b,0). 

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Urysohn.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Stone.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Bing.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Bing.html
http://mathonline.wikidot.com/topological-subspaces
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Since every open set in R is a union of these open intervals, we see that 

the subspace topology on R is simply the usual topology on R. 

Example 2 
Consider the topological space (R,η) where η is the usual topology of 

open intervals in R. Verify that the subspace topology on Z⊆R is the 

discrete topology on Z. 

Let x∈Z. Then the open interval (x−1/2,x+1/2)∩Z={x}. Hence every 

singleton set {x} is contained in the subspace topology on Z. But this 

implies that that ηZ is the discrete topology on Z. 

Basic Properties of Subspaces 
The following basic property is often taken for granted. 

Theorem. If (X, T) is a topological space and  are subsets, 

then we can form the subspace topology on Z in two ways: 

 by taking the subspace topology  from ; and 

 by taking successive subspaces  which is a topology on Y, 

then . 

The two topologies are identical. 

The proof is straightforward: in the first case, the class of all open 

subsets of Z is given by U ∩ Z for open subsets U of X; in the second 

case, the class is given by (U ∩ Y) ∩ Z = U∩ Z for open subsets U of X. 

They‘re identical. ♦ 

The following properties are also surprisingly useful in practice. 
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Theorem. Let Y be a subspace of (X, T). If Y is open in X, then any open 

subset of Y is an open subset of X. If Y is closed in X, then any closed 

subset of Y is a closed subset of X. 

Proof. 

For the first statement, an open subset of Y is of the form V = U ∩ Y for 

some open subset U of X. Since U and Y are both open in X, so 

is V = U ∩ Y. The same proof holds for the second statement by 

replacing ‗open‘ with ‗closed‘. ♦ 

 

Theorem. Let  be a topological space with subspace . 

 If B is a basis for T, then  is a basis for Y. 

 If S is a subbasis for T, then  is a subbasis 

for Y. 

Proof. 

For the first statement, we first verify that  is indeed a basis of some 

topology over Y: 

  

 Any two elements of  are of the form  for some 

basic open subsets . Since B is a 

basis,  for some . This 

gives 

 which is a union of elements in . 

Finally, we need to show  generates the topology . 

 Every element  (for some element U in B) is open 

in Y by definition. So . 

 Conversely, any element of  is of the form  for some open 

subset U of X. Since B is a basis for (X, T),  for 

some . So  which is a union of elements 

in . 

This concludes the proof for the first statement. 
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For the second, suppose the intersections of finitely many elements 

of S form basis B. It suffices to show that the intersections of finitely 

many elements of  form basis . 

 In one direction, note that . 

 Conversely, any element of  is of the form U ∩ Y for 

some . So  for finitely many . 

But this gives  for finitely many . 

 

 

5.7 SUMMARY 
 

We study in this unit 

1. Any subset of a topological space X inherits a topology from it. The 

inheritance is consistent across inclusion chains of topological 

spaces. 

2. With spaces and subspaces, one should be more careful when talking 

about ―open sets‖, i.e. mention what it‘s open in. 

3. If Y is open (resp. closed) in X and Z is open (resp. closed) in Y, then 

Z is open (resp. closed) in X. 

4. If Y is a subspace of X, then a basis (resp. subbasis) of X restrict to 

give a basis (resp. subbasis) of Y. 

 

5.8 KEYWORD 

 

Discrete : Individually separate and distinct 

Mobius Band : A Möbius strip, Möbius band, or Möbius loop 

also spelled Mobius or Moebius 

Terminology : The body of terms used with a particular technical 

application in a subject of study, profession, etc 

 

5.9 EXERCISE  
 
1. A subspace of (X, d) with the discrete metric is still discrete. 
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2. Pick the half-open interval 

. Then  is open in Y but not open in R. 

3. Consider the subset  of the real 

line R. The singleton set {0} is an open subset of Y since {0} = N(0, 

1/2). Furthermore, it is closed since the complement is a union of two 

open subsets. 

4. Consider the subset Z of R under the usual metric. Then the resulting 

subspace is the discrete space even though the induced metric d(m, n) 

= |m–n| is not exactly the discrete metric. 

5. Let  and Y be the set of points (x, y) satisfying . 

Geometrically, Y is a circle. Here, we‘ll think of it as a topological 

space with the subspace topology inherited from X. The space is 

denoted . More generally, for each positive integer n, the 

space  is the subspace of  comprising of all 

points  satisfying  

6. Consider X = N under the right order topology. 

A. If Y = {1, 2, 3}, then the subspace topology gives { (empty set), 

{3}, {2, 3}, Y }. 

B. If Y is the set of even numbers, then the 

bijection  preserves the structure of topological 

spaces.  

 

5.10 ANSWER FOR CHECK IN 

PROGRESS 

 

Check in Progress-I 

Answer  Q. 1 Check in Section 1 

              Q 2 Check in Section 1 

Check in Progress-II 

Answer  Q. 1 Check in Section 6 

              Q 2 Check in Section 5 
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UNIT 6 TOPIC:   CONTINUOUS 

MAPPING 

STRUCTURE 

6.0 Objective 

6.1 Introduction 

6.1.1 Continuous Mapping 

6.2 Homeomorphism 

6.2.1 Closed Mapping 

6.2.2 Open Mapping 

6.2.3 Perfect Mapping 

6.2.4 Quotient Mapping 

6.3 Stone-Weierstrass theorem 

6.4 Infinite Product Theorem 

6.5 Preparation theorem 

6.6 Summary 

6.7 Keyword 

6.8 Exercise  

6.9 Answer for Check in Progress 

6.10 Suggestion Reading And References 

 

6.0 OBJECTIVE 
 

 Learn Closed and Open Mapping 

 Learn perfect and quotient mapping 

 Learn Stone-Weiertrass Theorem 

 Learn Infinite Product Theorem 

 Learn Homomorphism and Preparation theorem 
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6.1 INTRODUCTION 

A continuous map is a continuous function between two topological 

spaces. In some fields of mathematics, the term "function" is reserved for 

functions which are into the real or complex numbers. The word "map" 

is then used for more general objects. 

A map  is continuous iff the preimage of any open set is open. 

6.1.1 Continuous Mapping 

A mapping  from a topological space  into a topological 

space  such that for every point  and for every 

neighbourhood  of its image  there is a 

neighbourhood  of  such the . This definition 

is a rephrasing of the neighbourhood definition of continuity of a 

function of a real variable (see Continuous function). There are many 

equivalent definitions of continuity. Thus, for the continuity of a 

mapping  it is necessary and sufficient that any one of the 

following conditions holds: 

a) the inverse image  of every open set  in  is open in ; 

b) the inverse image  of every closed set  in  is closed in ; 

c)  for every set  (the image of the closure is 

contained in the closure of the image). 

The concept of a continuous function, which was correctly stated already 

by B. Bolzano and A.L. Cauchy, played an important role in the 

mathematics of the 19th century. Weierstrass' function, which is nowhere 

differentiable, "Cantor's staircase" and Peano's curve pointed to the need 

of considering more special cases of continuity. The necessity of 

selecting special classes of mappings became even more urgent when 

continuous mappings of more general objects — topological spaces — 

were considered. One could mention the following important types of 

continuous mappings: topological mappings or homeomorphisms, 

perfect mappings, closed mappings, open mappings, and quotient 

mappings (cf. Homeomorphism; Closed mapping; Open 
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mapping; Perfect mapping; Quotient mapping). 

If  and  are two continuous mappings, then their 

composite  that is, the mapping  is also 

continuous. Every identity mapping  is evidently continuous. 

Therefore, topological spaces and continuous mappings form a category. 

One of the aims of topology is the classification of both spaces and 

mappings. Its essence consists of the following: three fundamental and 

closely connected problems are selected. 1) In what case can every space 

of a certain fixed class  be mapped into some space of a class  by a 

continuous mapping belonging to a class  2) By what intrinsic 

properties can one characterize spaces belonging to the class  which 

contains the images of spaces in a class  under continuous mappings in 

a class  3) Let  be the set of continuous mappings whose 

domains of definition are spaces in a class  and whose ranges are 

spaces in a class , and let  be some other class of mappings. What are 

the properties of mappings of the class  

These general statements comprise in particular, the following question: 

What topological properties are preserved by mappings of one kind or 

another under transition from a space to its image or inverse image? 1) 

Every -dimensional space (in the sense of ) can be mapped 

essentially (see Essential mapping) onto an -dimensional cube. 2) A 

pointwise-countable base is preserved under perfect (even under 

bifactorial) mappings. 3) Every closed mapping  in the 

class , where  is the class of zero-dimensional spaces 

with a countable base and  is the class of -dimensional spaces with a 

countable base, is at least -fold. 

The first specific problems of this kind were solved at the beginning of 

the 20th century. Such are, for example, the representation of an arbitrary 

compactum as a continuous image of the Cantor perfect set 

(Aleksandrov's theorem); the characterization of metric spaces with a 

countable base as open continuous images of subspaces of the space of 

irrational numbers (Hausdorff's theorem); the description of locally 

connected continua as continuous images of an interval. The solution of 

these problem not only made it possible to answer questions about 
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interrelationships between previously known spaces, but also led to the 

emergence of interesting new classes of spaces. Such are, for example, 

dyadic compacta, paracompact -spaces, perfect -dimensional spaces, 

and pseudo-compact spaces. 

The concept of a real-valued continuous function, that is, a continuous 

mapping of a topological space into , which lies at the basis of the 

theory of functions, plays an important role also in general topology. 

Here one must mention first of all the Urysohn lemma, the Brouwer–

Urysohn theorem on the extension of continuous functions from closed 

subsets of normal spaces, A.N. Tikhonov's definition of completely-

regular spaces (cf. Completely-regular space), and the Stone–Weierstrass 

theorem. These and other investigations led to the creation of a theory of 

rings of continuous functions, the methods of which turned out to be 

quite fruitful in general topology. 

A substantial part of dimension theory is the study of the behaviour of 

dimensional characterizations of spaces under transition to an image or 

inverse image by mappings of one class or another. Here an important 

role is played by -shifts, -mappings, -mappings, essential mappings, 

finite-to-multiple mappings, countable-to-multiple mappings, zero-

dimensional mappings, -dimensional mappings, etc. Here the method 

of continuous mappings leads to a mutual enrichment of and 

interrelations between domains of general topology of totally different 

origin, such as dimension theory, which has an intuitive geometric 

meaning, and the theory of cardinal invariants, which is abstract in 

character. 

One of the characteristics of dimension is the possibility of extending a 

continuous mapping from a closed subset to an -dimensional sphere. 

This is one of the versions of the theorem on the extension of mappings, 

which, like the fixed-point theorem closely connected with it, is of prime 

importance in branches of modern mathematics such as topology, 

algebra, function theory, functional analysis, and differential equations. 

One of the best studied classes of continuous mappings is that of the 

perfect irreducible mappings (cf. Perfect irreducible mapping). The 

theorem on the absolute of a regular space stimulated entire series of 
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investigations in this domain. In particular, the concept of an absolute 

has been extended to the class of all Hausdorff spaces. Closely connected 

with the concept of a continuous mapping turned out to be that of a -

proximity, which made it possible to given an intrinsic description of all 

perfect continuous inverse images of an arbitrary compactum. The 

extension of the theory of irreducible continuous mappings to the class of 

all Hausdorff spaces showed that continuous mappings are insufficient 

for the study of non-regular spaces and that is more natural to consider 

-continuous mappings in this case. 

The selection of uniformly-continuous functions from the class of all 

numerical functions of one or several variables became one of the 

starting points of research leading to the notion of a uniform topology. 

Continuous mappings of one type or another lie at the basis of the theory 

of retracts, splines and homology theory. A major role in modern 

mathematics is played by various aspects of the theory of multi-valued 

mappings (cf. Multi-valued mapping). Questions related to continuous 

mappings of Euclidean spaces are interesting by the wealth of ideas they 

contain. 

A basic concept in mathematical analysis. 

Let  be a real-valued function defined on a subset  of the real 

numbers , that is, . Then  is said to be continuous at a 

point  (or, in more detail, continuous at  with respect to ) if 

for any  there exists a  such that for 

all  with  the inequality 

 

is valid. If one denotes by 

 

and 

 

the - and -neighbourhoods of  and , respectively, then the 

definition above can be rephrased as follows:  is called continuous at a 

point  if for each -
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neighbourhood  of  there is a -

neighbourhood  of  such that . 

By using the concept of a limit one can say that  is continuous at a 

point  if its limit with respect to the set  exists at that point and if this 

limit is equal to : 

 

This is equivalent to 

 

where , , and ; that is, to an 

infinitely small increment of the argument at  corresponds an infinitely 

small increment of the function. 

In terms of the limit of a sequence, the definition of continuity of a 

function at  is:  is continuous at  if for every sequence of 

points ,  for which , one has 

 

All these definitions of a function being continuous at a point are 

equivalent. 

If  is continuous at  with respect to the 

set  (or ), then  is said to be 

continuous on the right (or left) at . 

All basic elementary functions are continuous at all points of their 

domains of definition. An important property of continuous functions is 

that their class is closed under the arithmetic operations and under 

composition of functions. More accurately, if two real-valued 

functions  and , , are continuous at , 

then so is their sum , difference  and product , and 

when , also their quotient  (which is necessarily defined 

in the intersection of  with a certain neighbourhood of ). If, as 

before,  is continuous at  and , , is 

https://www.encyclopediaofmath.org/index.php/Elementary_functions


                                                                                                                                                                     Notes 

147 

such that , so that the composite  makes sense, if there 

is a  such that  and if  is continuous at , 

then  is also continuous at . Thus, in this case 

 

that is, in this sense the operation of limit transition commutes with the 

operation of applying a continuous function. From these properties of 

continuous functions it follows that not only the basic, but also arbitrary 

elementary functions are continuous in their domains of definition. The 

property of continuity is also preserved under a uniform limit transition: 

If a sequence of functions  converges uniformly on a set  and if 

every  is continuous at ,  then 

 

is continuous at . 

If a function  is continuous at every point of , then  is said 

to be continuous on the set . If  and  is continuous at , 

then the restriction of  to  is also continuous at . The converse is 

not true, in general. For example, the restriction of the Dirichlet 

function either to the set of rational numbers or to the set of irrational 

numbers is continuous, but the Dirichlet function itself is discontinuous 

at all points. 

An important class of real-valued continuous functions of a single 

variable consists of those functions that are continuous on intervals. They 

have the following properties. 

Weierstrass' first theorem: A function that is continuous on a closed 

interval is bounded on that interval. 

Weierstrass' second theorem: A function that is continuous on a closed 

interval assumes on that interval a largest and a smallest value. 

Cauchy's intermediate value theorem: A function that is continuous on a 

closed interval assumes on it any value between those at the end points. 

The inverse function theorem: If a function is continuous and strictly 

monotone on an interval, then it has a single-valued inverse function, 

https://www.encyclopediaofmath.org/index.php/Dirichlet-function
https://www.encyclopediaofmath.org/index.php/Dirichlet-function
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which is also defined on an interval and is strictly monotone and 

continuous on it. 

Cantor's theorem on uniform continuity: A function that is continuous on 

a closed interval is uniformly continuous on it. 

Every function that is continuous on a closed interval can be uniformly 

approximated on it with arbitrary accuracy by an algebraic polynomial, 

and every function  that is continuous on  and is such 

that  can be uniformly approximated on  with 

arbitrary accuracy by trigonometric polynomials (see Weierstrass 

theorem on the approximation of functions). 

The concept of a continuous function can be generalized to wider forms 

of functions, above all, to functions of several variables. The definition 

above is preserved formally if one understands by  a subset of an -

dimensional Euclidean space , by  the distance between two 

points  and , by  the -neighbourhood 

of  in , and by 

 

the limit of a sequence of points in . A function , , 

of several variables  that is continuous at a 

point  is also called continuous at this 

point  jointly in the variables , in contrast to functions of 

several variables that are continuous in the variables individually. A 

function , , is called continuous at a point  in, say, 

the variable  if the restriction of  to the set 

 

is continuous at , that is, if the function  of the 

single variable  is continuous at . A function , 

, , can be continuous at  in every variable , but need not 

be continuous at this point jointly in the variables. 

The definition of a continuous function goes over directly to complex-

valued functions. Only one has to interpret  in the 

https://www.encyclopediaofmath.org/index.php/Weierstrass_theorem
https://www.encyclopediaofmath.org/index.php/Weierstrass_theorem
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definition above as the norm of the complex 

number  and 

 

as the limit in the complex plane. 

All these definitions are special cases of the more general concept of a 

continuous function  with as domain of definition a certain topological 

space  and with values in a certain topological 

space  (see Continuous mapping). 

Many properties of real-valued continuous functions of a single variable 

carry over to continuous mappings between topological spaces. A 

generalization of Weierstrass' theorem mentioned above: The continuous 

image of a compact topological space in a Hausdorff space is compact. A 

generalization of Cauchy's intermediate value theorem for a continuous 

function on a closed interval: A continuous image of a connected 

topological space in a topological space is also connected. A 

generalization of the theorem on the inverse function of a strictly 

monotone continuous function: A continuous one-to-one mapping of a 

compactum onto a Hausdorff space is a homeomorphism. A 

generalization of the theorem on the limit of a uniformly-convergent 

sequence of continuous functions: If  is a uniformly-

convergent sequence of mappings of a topological space  into a metric 

space  that are continuous (at a point ) then the limit 

mapping  is also continuous (at ). A generalization 

of Weierstrass' theorem on the approximation of functions that are 

continuous on a closed interval is the Stone–Weierstrass theorem. 

Check in Progress-I 

Q. 1 Define Continuous Mapping.  

Solution 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

…………………………………………………………………………… 

https://www.encyclopediaofmath.org/index.php/Continuous_mapping
https://www.encyclopediaofmath.org/index.php/Stone%E2%80%93Weierstrass_theorem
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Q. 2 Give Example of Continuous mapping.  

Solution 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

…………………………………………………………………………… 

6.2 HOMEOMORPHISM 

A one-to-one correspondence between two topological spaces such that 

the two mutually-inverse mappings defined by this correspondence are 

continuous. These mappings are said to be homeomorphic, or 

topological, mappings, and also homeomorphisms, while the spaces are 

said to belong to the same topological type or are said to be 

homeomorphic or topologically equivalent. They are isomorphic objects 

in the category of topological spaces and continuous mappings. A 

homeomorphism must not be confused with a condensation (a bijective 

continuous mapping); however, a condensation of a compactum onto a 

Hausdorff space is a homeomorphism. 

Examples. 1) The function 1/(eX+1) establishes a homeomorphism 

between the real line RR and the interval (0,1); 2) a closed circle is 

homeomorphic to any closed convex polygon; 3) three-dimensional 

projective space is homeomorphic to the group of rotations of the 

space R3 around the origin and also to the space of unit tangent vectors 

to the sphere S2; 4) all compact zero-dimensional groups with a 

countable base are homeomorphic to the Cantor set; 5) all infinite-

dimensional separable Banach spaces, and even all Fréchet spaces, are 

homeomorphic; 6) a sphere and a torus are not homeomorphic. 

The term "homeomorphism" was introduced in 1895 by H. Poincaré [3], 

who applied it to (piecewise-) differentiable mappings of domains and 

submanifolds in RnRn; however, the concept was known earlier, e.g. to 

F. Klein (1872) and, in a rudimentary form, to A. Möbius (as an 

elementary likeness, 1863). At the beginning of the 20th century 

homeomorphisms began to be studied without assuming differentiability, 

as a result of the development of set theory and the axiomatic method. 

https://www.encyclopediaofmath.org/index.php/Homeomorphism#References
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This problem, which was explicitly stated for the first time by D. 

Hilbert [7], forms the content of Hilbert's fifth problem. Of special 

importance was the discovery by L.E.J. Brouwer 

that RnRn and RmRm are not homeomorphic if n≠mn≠m. This discovery 

restored the faith put by mathematicians in geometric intuition. This faith 

had been shaken by G. Cantor's result stating that Rn and Rm have the 

same cardinality and by the result obtained by G. Peano on the 

possibility of a continuous mapping from Rn onto Rm, n<m. The 

concepts of a metric (or, respectively, a topological) space, introduced by 

M. Fréchet and F. Hausdorff, laid a firm foundation for the concept of a 

homeomorphism and made it possible to formulate the concepts of a 

topological property (a property which remains unchanged under a 

homeomorphism), of topological invariance, etc., and to formulate the 

problem of classifying topological spaces of various types up to a 

homeomorphism. However, when presented in this manner, the problem 

becomes exceedingly complicated even for very narrow classes of 

spaces. In addition to the classical case of two-dimensional manifolds, 

such a classification was given only for certain types of graphs, for two-

dimensional polyhedra and for certain classes of manifolds. The general 

problem of classification cannot be algorithmically solved at all, since it 

is impossible to obtain an algorithm for distinguishing, say, manifolds of 

dimension larger than three. Accordingly, the classification problem is 

usually posed in the framework of a weaker equivalence relation, e.g. in 

algebraic topology using homotopy type or, alternatively, to classify 

spaces having a certain specified structure. Even so, the homeomorphism 

problem remains highly important. In the topology of manifolds it was 

only in the late 1960s that methods for studying manifolds up to a 

homeomorphism were developed. These studies are carried out in close 

connection with homotopic, topological, piecewise-linear, and smooth 

structures. 

A second problem is the topological characterization of individual spaces 

and classes of spaces (i.e. a specification of their characteristic 

topological properties, formulated in the language of general topology, 

cf. Topology, general and Topological invariant). This has been solved, 

for example, for one-dimensional manifolds, two-dimensional 

https://www.encyclopediaofmath.org/index.php/Homeomorphism#References
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manifolds, Cantor sets, the Sierpiński curve, the Menger curve, pseudo-

arcs, Baire spaces, etc. Spectra furnish a universal tool for the 

topological characterization of spaces; Aleksandrov's homeomorphism 

theorem was obtained using spectra [4]. The sphere and, in general, the 

class of locally Euclidean spaces, has been characterized by a sequence 

of subdivisions gradually diminishing in size [5]. A description of locally 

compact Hausdorff groups by means of spectra has been given [6]. 

Another method is to consider various algebraic structures connected 

with the mappings. Thus, a compact Hausdorff space is homeomorphic 

to the space of maximal ideals of the algebra of real functions defined on 

it. Many spaces are characterized by the semi-group of continuous 

mappings into themselves (cf. Homeomorphism group). In general 

topology a topological description is given of numerous classes of 

topological spaces. The characterization of spaces inside a given class is 

also of interest. Thus, it is very useful to describe a sphere as a compact 

manifold covered by two open cells. The problem of algorithmic 

identification of spaces has not been studied much. At the time of writing 

(1977) it has not been solved for the sphere SnSn where n≥3. 

In general, the non-homeomorphism of two topological spaces is proved 

by specifying a topological property displayed by only one of them 

(compactness, connectedness, etc.; e.g., a segment differs from a circle in 

that it can be divided into two by one point); the method of invariants is 

especially significant in this connection. Invariants are either defined in 

an axiomatic manner for a whole class of spaces at the same time, or else 

algorithmically, according to a specific representation of the space, e.g. 

by triangulation, by the Heegaard diagram, by decomposition into 

handles (cf. Handle theory), etc. The problem in the former case is to 

compute the invariant, while in the latter it is to prove topological 

invariance. An intermediate case is also possible — e.g. characteristic 

classes (cf. Characteristic class) of smooth manifolds were at first 

defined as obstructions to the construction of vector and frame fields, 

and later as the image of the tangent bundle under mappings of 

the KOKO-functor into a cohomology functor, but in neither case can the 

respective problems be solved by definition. Historically the first 

example of proving topological invariance (of the linear dimension 

https://www.encyclopediaofmath.org/index.php/Homeomorphism#References
https://www.encyclopediaofmath.org/index.php/Homeomorphism#References
https://www.encyclopediaofmath.org/index.php/Homeomorphism#References
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of RnRn) was given by Brouwer in 1912. The classical method, due to 

Poincaré, is to begin by giving both definitions — the "computable" and 

the "invariant" — and then to prove that they are identical. This method 

proved especially useful in the theory of homology of a polyhedron. 

Another method is to prove that an invariant remains unchanged under 

elementary transformations of a representation of the space (e.g. 

subdivision by triangulations). It is completed if it is known that it is 

possible to obtain all the representations of a given type in this manner. 

Thus, the so-called "Hauptvermutung" of combinatorial topology arose 

in the topology of polyhedra in this connection. This method (which was 

also proposed by Poincaré) proved highly useful in the topology of two 

and three dimensions, in particular in knot theory, but it is out of use now 

(except for the constructive direction) not so much because the 

"Hauptvermutung" proved to be untrue, as because the development of 

category theory made it possible to give more realistic definitions, more 

in accordance with the subject matter, with a more accurate presentation 

of the problem of computation and topological invariance. Thus, the 

invariance of homology groups, which are defined functorially for spaces 

but are defined in a computable manner for complexes, follows from the 

comparison of the category of complexes and homotopy classes of 

simplicial mappings with the category of homotopy classes of continuous 

mappings. In this way one does not have to give a separate definition for 

a large category and one can extend it to a smaller category as well. (The 

sources of this idea are found in Brouwer's theory of degree.) The 

superiority of the new method was seen to be particularly evident in 

connection with the second definition of characteristic classes, given 

above, as transformations of functors. Thus, the problem of topological 

invariance naturally turned out to be a part of the question of the relation 

between the KK-functor and its topological generalization. 

If two spaces are homeomorphic, then the method of spectra (and of 

diminishing subdivisions) is the only one of general value for the 

establishment of homeomorphism. On the other hand, if a classification 

has already been constructed the problem is solved by comparison of 

invariants. In practice the establishment of homeomorphism often proves 

to be a very difficult geometrical problem, which must be solved by 
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employing special tools. Thus, homeomorphism of Euclidean spaces and 

some of their quotient spaces is established using a pseudo-isotopy. 

6.2.1 Closed mapping 

A mapping of one topological space to another, under which the image 

of every closed set is a closed set. The class of continuous closed 

mappings plays an important role in general topology and its 

applications. Continuous closed compact mappings are called perfect 

mappings. A continuous mapping , , of -spaces 

is closed if and only if the decomposition  is 

continuous in the sense of Aleksandrov (upper continuous) or if for every 

open set  in , the set  is open in . 

The latter property is basic to the definition of upper semi-continuous 

many-valued mappings. That is,  is closed if and only if its (many-

valued) inverse mapping is upper continuous. Any continuous mapping 

of a Hausdorff compactum onto a Hausdorff space is closed. Any 

continuous closed mapping of -spaces is a quotient mapping; the 

converse is false. The orthogonal projection of a plane onto a straight 

line is continuous and open, but not closed. Similarly, not every 

continuous closed mapping is open. If  is continuous and 

closed, with  and  completely regular, 

then  for any point . (Here  is 

the Stone–Čech compactification and  is the continuous 

extension of the mapping to the Stone–Čech compactifications 

of  and ); the converse is true in the class of normal spaces. Passage 

to the image under a continuous closed mapping preserves the following 

topological properties: normality; collection-wise normality; perfect 

normality; paracompactness; weak paracompactness. Complete 

regularity and strong paracompactness need not be preserved under 

continuous closed — and even perfect — mappings. Passage to the pre-

image under a continuous closed mapping need not preserve the above-

mentioned properties. The explanation for this is that the pre-image of a 

point under a continuous closed mapping need not be compact, though in 

many cases there is little difference between continuous closed and 
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perfect mappings. If  is a continuous closed mapping of a metric 

space  onto a space  satisfying the first axiom of countability, 

then  is metrizable and the boundary of the pre-image  is 

compact for every . If  is a continuous closed mapping of a 

metric space  onto a -space , then the set of all points  for 

which  is not compact is -discrete. 

6.2.2 Open mapping 

A mapping of one topological space into another under which the image 

of every open set is itself open. 

Projections of topological products onto the factors are open mappings. 

Openness of a mapping can be interpreted as a form of continuity of its 

inverse many-valued mapping. A one-to-one continuous open mapping is 

a homeomorphism. In general topology, open mappings are used in the 

classification of spaces. The question of the behaviour of topological 

invariants under continuous open mappings is important. All spaces with 

the first axiom of countability, and only they, are images of metric 

spaces under continuous open mappings. A metrizable space which is the 

image of a complete metric space under a continuous open mapping is 

metrizable by a complete metric. If a paracompact space is the image of 

a complete metric space under a continuous open mapping, then it is 

metrizable. A countable-to-one continuous open mapping of compacta 

does not increase the dimensions. However, a -dimensional cube can be 

mapped by a continuous open mapping onto a cube of any larger 

dimension. Every compactum is the image of a certain one-dimensional 

compactum under a continuous open mapping with zero-dimensional 

fibres (i.e. inverse images of points) 

Continuous open mappings under which the inverse images of all points 

are compact — the so-called compact-open mappings — are of separate 

interest in their own right. Spaces with a uniform base, and only they, are 

inverse images of metric spaces under compact-open mappings. Closed 

continuous open mappings are also important. All continuous open 

mappings of compacta into Hausdorff spaces (cf. Hausdorff space) fall 

into this category. Continuous closed open mappings preserve 



Notes 

156 

metrizability. Open mappings with discrete fibres play an important role 

in the theory of functions of one complex variable: these include all 

holomorphic functions in a domain. The theorem on the openness of 

holomorphic functions is central to proving the maximum-modulus 

principle, and to proving the fundamental theorem on the existence of a 

root of an arbitrary non-constant polynomial over the field of complex 

numbers. 

6.2.3 Perfect mapping 

A continuous closed mapping (cf. Closed mapping; Continuous 

mapping) of topological spaces under which the pre-image of every point 

is compact. Perfect mappings are akin to continuous mappings from 

compact spaces into Hausdorff spaces (every such mapping is perfect), 

although the scope of the definition covers all topological spaces. In the 

class of completely-regular spaces, the perfect mappings are 

characterized by the fact that their Stone–Čech extension maps 

remainders to remainders (cf. Remainder of a space). Perfect mappings 

preserve metrizability, paracompactness, weight, and Čech 

completeness. Other invariants (such as the character of a space) are 

transformed in a proper way. The class of perfect mappings is closed 

under taking products and composition. A restriction of a perfect 

mapping to a closed subspace is perfect (this is false for quotient and 

open mappings). 

The above properties of perfect mappings have led to a situation where 

this class of mappings has begun to play a pivotal role in the 

classification of topological spaces. The completely-regular pre-images 

of metric spaces under perfect mappings are characterized as 

paracompact feathered p-) spaces (cf. Paracompact space; Feathered 

space). The class of paracompact pp-spaces is closed under perfect 

mappings and their inverses. An important property of perfect mappings 

is that they can be restricted to certain closed subspaces without reducing 

the image in such a way that the resulting mapping is irreducible, that is, 

it cannot be further restricted without reducing the image (cf. 

also Irreducible mapping). Irreducible perfect mappings are the starting 

point for constructing a theory of absolutes of topological spaces 



                                                                                                                                                                     Notes 

157 

(cf. Absolute). For an irreducible perfect mapping, the ππ-weight 

(cf. Weight of a topological space) of the image is always equal to that of 

the pre-image, and the Suslin number of the image is equal to that of the 

pre-image. If a completely-regular T1-space is mapped onto a 

completely-regular T1-space by a perfect mapping, then X is 

homeomorphic to a closed subspace of the topological product of Y with 

some T2-compactum. The diagonal product of a perfect mapping and a 

continuous mapping of T2-spaces is always a perfect mapping; in 

particular, the diagonal product of a perfect mapping and a compression 

(i.e. a one-to-one continuous mapping onto) is a homeomorphism. If a 

topological space can be mapped perfectly onto one metric space and 

compressed onto another metric space (which need not be the same), 

then it is itself metrizable. 

 

6.2.4 Quotient mapping 

A mapping  f of a topological space X onto a topological space Y for 

which a set V⊆Y is open in Y if and only if its pre-image f
−1

(v) is open 

in X. If one is given a mapping f of a topological space X onto a set Y, 

then there is on Y a strongest topology Tf (that is, one containing the 

greatest number of open sets) among all the topologies relative to 

which f is continuous. The topology Tf consists of all sets V⊆Y such 

that f
−1

(v) is open in X. This topology is the unique topology on Y such 

that f is a quotient mapping. Therefore Tf is called the quotient topology 

corresponding to the mapping f and the given topology T on X. 

The construction described above arises in studying decompositions of 

topological spaces and leads to an important operation — passing from a 

given topological space to a new one — a decomposition space. Suppose 

one is given a decomposition γ of a topological space (X,T), that is, a 

family γ of non-empty pairwise-disjoint subsets of X that covers X. 

Then a projection mapping π:X→γ is defined by the 

rule: π(x)=P∈γ if x∈P⊆X. The set γ is now endowed with the quotient 

topology Tπ corresponding to the topology T on X and the mapping π, 
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and (γ,Tπ) is called a decomposition space of (X,T). Thus, up to a 

homeomorphism a circle can be represented as a decomposition space of 

a line segment, a sphere as a decomposition space of a disc, the Möbius 

band as a decomposition space of a rectangle, the projective plane as a 

decomposition space of a sphere, etc. 

The following properties of quotient mappings, connected with 

considering diagrams, are important: Let f:X→Y be a continuous 

mapping with f(X)=Y. Then there are a topological space Z, a quotient 

mapping g:X→Z and a continuous one-to-one mapping (that is, a 

contraction) h:Z→Y such that f=h∘g. For Z one can take the 

decomposition space γ ={ f
−1

y: y∈Y} of X into the complete pre-

images of points under f, and the role of g is then played by the 

projection π. Suppose one is given a continuous mapping f2:X→Y2 and 

a quotient mapping f1:X→Y1, where the following condition is 

satisfied: If x′,x′′∈X′, and f1(x′)=f1(x′′), then also f2(x′)=f2(x′′). Then 

the unique mapping g:Y1→Y2 such that g∘f1=f2 turns out to be 

continuous. The restriction of a quotient mapping to a subspace need not 

be a quotient mapping — even if this subspace is both open and closed in 

the original space. The Cartesian product of a quotient mapping and the 

identity mapping need not be a quotient mapping, nor need the Cartesian 

square of a quotient mapping be such. The restriction of a quotient 

mapping to a complete pre-image does not have to be a quotient 

mapping. More precisely, if f:X→Y is a quotient mapping and 

if Y1⊆Y, X1= f
−1 

(Y1), Y1=f|X , then f1:X1→Y1 need not be a 

quotient mapping. This cannot occur if Y1 is open or closed in Y. 

These facts show that one must treat quotient mappings with care and 

that from the point of view of category theory the class of quotient 

mappings is not as harmonious and convenient as that of the continuous 

mappings, perfect mappings and open mappings (cf. Continuous 

mapping; Perfect mapping; Open mapping). However, the consideration 

of decomposition spaces and the "diagram" properties of quotient 

mappings mentioned above assure the class of quotient mappings of a 

position as one of the most important classes of mappings in topology. 
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This class contains all surjective, continuous, open or closed mappings 

(cf. Closed mapping). Quotient mappings play a vital role in the 

classification of spaces by the method of mappings. Thus, k-spaces are 

characterized as quotient spaces (that is, images under quotient 

mappings) of locally compact Hausdorff spaces, and sequential spaces 

are precisely the quotient spaces of metric spaces. 

The majority of topological properties are not preserved under quotient 

mappings. Thus, a quotient space of a metric space need not be a 

Hausdorff space, and a quotient space of a separable metric space need 

not have a countable base. Therefore the question of the behaviour of 

topological properties under quotient mappings usually arises under 

additional restrictions on the pre-images of points or on the image space. 

It is known, for example, that if a compactum is homeomorphic to a 

decomposition space of a separable metric space, then the compactum is 

metrizable. Under a quotient mapping of a separable metric space on a 

regular T1-space with the first axiom of countability, the image is 

metrizable. But there are topological invariants that are stable relative to 

any quotient mapping. These include, for example, sequentiality and an 

upper bound on tightness. In topological algebra quotient mappings that 

are at the same time algebra homeomorphisms often have much more 

structure than in general topology. Thus, an algebraic homomorphism of 

one topological group onto another that is a quotient mapping is 

necessarily an open mapping. Thanks to this, the range of topological 

properties preserved by quotient homomorphisms is rather broad (it 

includes, for example, metrizability). 

 

6.3 STONE-WEIERSTRASS THEOREM 

In mathematical analysis, the Weierstrass approximation theorem states 

that every continuous function defined on a closed interval [a, b] can 

be uniformly approximated as closely as desired by 

a polynomial function. Because polynomials are among the simplest 

functions, and because computers can directly evaluate polynomials, this 

theorem has both practical and theoretical relevance, especially 

in polynomial interpolation. The original version of this result was 

established by Karl Weierstrass in 1885 using the Weierstrass transform. 
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Marshall H. Stone considerably generalized the theorem (Stone 1937) 

and simplified the proof (Stone 1948). His result is known as the Stone–

Weierstrass theorem. The Stone–Weierstrass theorem generalizes the 

Weierstrass approximation theorem in two directions both regressive and 

progressive: instead of the real interval [a, b], an 

arbitrary compact Hausdorff space X is considered, and instead of 

the algebra of polynomial functions, approximation with elements from 

more general subalgebras of C(X) is investigated. The Stone–Weierstrass 

theorem is a vital result in the study of the algebra of continuous 

functions on a compact Hausdorff space. 

Further, there is a generalization of the Stone–Weierstrass theorem to 

noncompact Tychonoff spaces, namely, any continuous function on a 

Tychonoff space is approximated uniformly on compact sets by algebras 

of the type appearing in the Stone–Weierstrass theorem and described 

below. 

A different generalization of Weierstrass' original theorem 

is Mergelyan's theorem, which generalizes it to functions defined on 

certain subsets of the complex plane 

Check In Progress-II 

Q. 1 Define Quotient Mapping.  

Solution 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

…………………………………………………………………………… 

Q. 2 Give perfect  mapping.  

Solution 

…………………………………………………………………….. 

…………………………………………………………………………… 

……………………………………………………………………………. 

…………………………………………………………………………… 
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6.4 INFINITE PRODUCT THEOREM 

Weierstrass' infinite product theorem [1]: For any given sequence of 

points in the complex plane , 

 

(1) 

 

there exists an entire function with zeros at the points  of this 

sequence and only at these points. This function may be constructed as 

a canonical product: 

 

(2) 

where  is the multiplicity of zero in the sequence (1), and 

 

The multipliers 

 

are called Weierstrass prime multipliers or elementary factors. The 

exponents  are chosen so as to ensure the convergence of the product 

(2); for instance, the choice  ensures the convergence of (2) for 

any sequence of the form (1). 

It also follows from this theorem that any entire function  with 

zeros (1) has the form 

 

where  is the canonical product (2) and  is an entire function 

(see also Hadamard theorem on entire functions). 

Weierstrass' infinite product theorem can be generalized to the case of an 

arbitrary domain : Whatever a sequence of 

points  without limit points in , there exists a 

https://www.encyclopediaofmath.org/index.php/Weierstrass_theorem#References
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holomorphic function  in  with zeros at the points  and only at 

these points. 

The part of the theorem concerning the existence of an entire function 

with arbitrarily specified zeros may be generalized to functions of 

several complex variables as follows: Let each point  of the complex 

space , , be brought into correspondence with one of its 

neighbourhoods  and with a function  which is holomorphic 

in . Moreover, suppose this is done in such a way that if the 

intersection  of the neighbourhoods of the 

points  is non-empty, then the fraction  is a 

holomorphic function in . Under these conditions there exists 

an entire function  in  such that the fraction  is a 

holomorphic function at every point . This theorem is known as 

Cousin's second theorem (see also Cousin problems). 

 

6.5 PREPARATION THEOREM 

Weierstrass' preparation theorem. A theorem obtained and originally 

formulated by K. Weierstrass in 1860 as a preparation lemma, used in 

the proofs of the existence and analytic nature of the implicit function of 

a complex variable defined by an equation  whose left-hand 

side is a holomorphic function of two complex variables. This theorem 

generalizes the following important property of holomorphic functions of 

one complex variable to functions of several complex variables: 

If  is a holomorphic function of  in a neighbourhood of the 

coordinate origin with , , then it may be represented 

in the form , where  is the multiplicity of vanishing 

of  at the coordinate origin, , while the holomorphic 

function  is non-zero in a certain neighbourhood of the origin. 

The formulation of the Weierstrass preparation theorem for functions 

of  complex variables, . Let 

 

be a holomorphic function of  in the polydisc 
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and let 

 

Then, in some polydisc 

 

the function  can be represented in the form 

 

 

where  is the multiplicity of vanishing of the function 

 

at the coordinate origin, ; the functions  are 

holomorphic in the polydisc 

 

 

the function  is holomorphic and does not vanish in . The 

functions , , and  are uniquely determined 

by the conditions of the theorem. 

If the formulation is suitably modified, the coordinate origin may be 

replaced by any point  of the complex space . It 

follows from the Weierstrass preparation theorem that for , as 

distinct from the case of one complex variable, every neighbourhood of a 

zero of a holomorphic function contains an infinite set of other zeros of 

this function. 

Weierstrass' preparation theorem is purely algebraic, and may be 

formulated for formal power series. Let  be the ring of 

formal power series in the variables  with coefficients in the 

field of complex numbers ; let  be a series of this ring whose terms 
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have lowest possible degree , and assume that a term of the 

form , , exists. The series  can then be represented as 

 

where  are series in  whose constant terms 

are zero, and  is a series in  with non-zero constant 

term. The formal power series  and  are uniquely determined 

by . 

A meaning which is sometimes given to the theorem is the following 

division theorem: Let the series 

 

satisfy the conditions just specified, and let  be an arbitrary series 

in . Then there exists a series 

 

and series 

 

 

which satisfy the following equation: 

 

Weierstrass' preparation theorem also applies to rings of formally 

bounded series. It provides a method of inductive transition, e.g. 

from  to . It is possible to establish 

certain properties of the rings  and  in this 

way, such as being Noetherian and having the unique factorization 

property. There exists a generalization of this theorem to differentiable 

functions [6] 

 

6.6 SUMMARY  
We study in this unit Weierstrass Preparation Theorem. We 

study infinite product theorem. We study continuous mapping 

https://www.encyclopediaofmath.org/index.php/Weierstrass_theorem#References
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theorem and its example. We study perfect mapping, quotient 

mapping and open mapping.  

6.7 KEYWORD 
MAPPING : An operation that associates each element of a given set 

(the domain) with one or more elements of a second set  

UNIFORMIXABLE : adjective. causing fear, apprehension, or 

dread: a formidable opponent. of discouraging or awesome strength, size, 

difficulty, etc. ; intimidating: a formidable problem 

6.8 EXERCISE  

1. Prove that in a discrete metric space, every subset is both open and 

closed. 

If f is a map from a discrete metric space to any metric space, prove 

that f is continuous. 

Which maps from R (with its usual metric) to a discrete metric space 

are continuous ? 

2. If f from R to R is a continuous map, is the image of an open set 

always open ? 

Is the inverse image of a closed set always closed ? 

3. Show that in any metric space an -neighbourhood is an open set. 

Show that any open set can be written as a union of suitable -

neighbourhoods. 

Give an example of an open subset of R (with its usual metric) 

which cannot be written as a union of finitely many -

neighbourhoods. 

Can any open set can be written as a union of countably many 

suitable -neighbourhoods? 

4. If f is a continuous function from R
2
 to R (usual metrics!) prove that 

the set 

{ (x, y)  R
2
 | f(x, y) > 0 } is an open subset of R

2
. 

Deduce that the open unit disc and open unit square are open sets. 

Is the set { (x, y)  R
2
 | f(x, y)  0 } necessarily a closed set ? 
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5. If (ai) is a sequence in a metric space convergent to a point , prove 

that  is the only limit point of the set {ai}. Give an example of a 

set with exactly two limit points. Give an example of a set with 

countably many limit points. 

6. Let X be the set {a, b, c, d, e}. Determine which of the following 

sets  are topologies on X. 

i.  = {X, , {a}, {a, b}, {a, c}} 

ii.  = {X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}} 

iii.  = {X, , {a}, {a, b, c}, {a, b, d}, {a, b, c, d}} 

iv.  = {X, , {a}, {b}, {a, b}, {a, b, c}} 

6.9 ANSWER FOR CHECK IN PROGRESS 

 

Check in Progress-I 

Answer  Q. 1 Check in Section 1 

              Q 2 Check in Section 1 

Check in Progress-II 

Answer  Q. 1 Check in Section 4 

              Q 2 Check in Section 3 
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UNIT 7 TOPIC :   TOPOLOGICAL 

MANIFOLDS 

Structure 

7.0 Objective 

7.1 Introduction 

   7.1.1 Application of Theorems 

7.2 Homeomorphism 

   7.2.1 Topological Property 

   7.2.2 Product Topology 

   7.2.3 Quotient Topology 

7.3 Cruising to Subspace to a point 

   7.3.1 Pre Class Question 

7.4 Topological Manifolds 

   7. 4.1 Manifold 

    7.4.2 Motivational Example 

        7. 4.2.1 Circle 

         7.4.2.2 Other Curve 

         7.4.2.3 Enriched Circle 

         7.4.2.4 Synthesis 

7.5 Charts, atlases and transition mapping 

   7.5.1 Charts 

   7.5.2 Atlases 

   7.5.3 Transition Maps 

   7.5.4 Additional Structure 

7.6 Construction 

   7.6.1 Chart 

7.6.2 Patchwork 
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 7.6.3 Identifying points of a manifold 

 7.6.4 Cartesian Product 

7.6.5 Manifold with boundary 

7.6.6 Gluing along boundries 

7.7 Classes of Manifolds 

   7.7.1 Topological manifolds 

   7.7.2 Riemannian manifolds 

   7.7.3 Finsler Manifold 

   7.7.4 Lie Group 

   7.5 Other types of manifold 

7.8 Summary 

7.9 Keyword 

7.10 Exercise  

7.11 Answer for Check In Progress 

7.13 Suggestion Reading And Reference 

 

7.0 OBJECTIVE 

In this topological manifold topic we learn induced homomorphism and 

indeed homomorphism. Learn patch work and Construction of chart. 

Learn clases of manifold and Gluing among boundary. 

 

7.1 INTRODUCTION 

The induced homomorphism is related to the study of the fundamental 

group. We will give a few theorems and notes, but first we make a 

definition. 

Definition 

Let X and Y be topological spaces; let x0 be a point of X and let y0 be a 

point of y. Suppose h is a continuous map from X to Y such that h(x0) = 

y0. Define a map h* from π1(X,x0) to π2(Y,y0) by composing a loop in 
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π1(X,x0) with h to get a loop in π1(Y,y0). Then h* is a homomorphism 

between fundamental groups known as the homomorphism induced by h. 

Note 1 

Let us check that if f is a loop in π1(X,x0), then h*(f) is a loop in π1(Y,y0). 

Note that h*(f) is a continuous map from [a,b] to Y (we will assume that 

[a,b] = [0,1] which has no difference to the general case since these two 

sets are homeomorphic), and h*(f(0)) = h*(x0) = y0 and h*(f(1)) = h*(x0) 

= y0. 

Note 2 

We will check that h is indeed a homomorphism. To avoid repetition, 

whenever we call f and g loops, they will be known as loops based at x0. 

Suppose f and g are two loops. Then [0 is the group operation on 

π1(X,x0) and + is the group operation on π1(Y,y0)] 

 

h*(f 0 g) = h*(f(2t)) for t in [0,1/2] = (h*(f)) + (h*(g)) 

h*(f 0 g) = h*(g(2t-1)) for t in [1/2,1] = (h*(f)) + (h*(g)) 

 

so that h* is indeed a homomorphism. 

Note 3 

Checking h* is a function (i.e, every loop in π1(X,x0) gets mapped onto a 

unique loop in π1(Y,y0)) follows from the fact that if f and g are loops in 

π1(X,x0) that are homotopic via the homotopy H, then h*(f) and h*(g) 

are homotopic via the homotopy h*H. 

 

Note 4 

Note that none of the above notes would be true unless h is continuous 

which is why this is needed in the hypothesis. We leave it to you to work 

out why h(x0) = y0 [which is fairly trivial]. 

We now prove one important theorem which can be used to check 

whether two topological spaces are homeomorphic or not. In fact, this 
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theorem illustrates why algebraic topology was invented in the first 

place. 

7.1.1 Applications of the Theorems 

Theorem 

Suppose X and Y are two homeomorphic topological spaces. If h is a 

homeomorphism from X to Y, then the induced homomorphism, h* is an 

isomorphism between fundamental groups [Assume that we are 

considering the fundamental groups π1(X,x0) and π1(Y,y0) with h(x0) = 

y0] 

Proof 

We have already checked in note 2 that h* is a homomorphism. It 

remains to check that h* is bijective. Suppose p is the inverse of h; then 

p* is the inverse of h*. This follows from the fact that (p(h))*(f) = 

p*(h*(f)) = f = (h(p))*(f) = h*(p*(f)). If f and g are two loops in X where 

f is not homotopic to g, the h*(f) is not homotopic to h*(g); if F is a 

homotopy between them, p*(F) would be a homotopy between f and g. If 

k is any loop in π1(Y,y0) , then h*(p*(k)) = k where p*(k) is a loop in X. 

This shows that h* is bijective. 

Note: It is a good exercise to check that we used all the properties that h 

satisfies, i.e we used completely, the fact that h is a homeomorphism. 

1. The torus is not homeomorphic to R^2 for their fundamental groups 

are not isomorphic (their fundamental groups don‘t have the same 

cardinality). Note that, a simply connected space cannot be 

homeomorphic to a non-simply connected space; one has a trivial 

fundamental group and the other does not. 

2. In fact, any two topological spaces have homomorphic fundamental 

groups (at a particular base point). See note 2 where we may let h* be the 

homomorphism induced by the constant map. However, they need not 

have isomorphic fundamental groups (at a particular base point). This is 

interesting because it shows that the fundamental groups of any two 

topological spaces always have the same ‗group structure‘. 
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3. The fundamental group of the unit circle is isomorphic to the additive 

group of integers. Therefore, the fundamental group of [0,1] is 

isomorphic to the set of integers since [0,1] and the unit circle are 

homeomorphic (why is this statement false?). The one-point 

compactification of R also has a fundamental group isomorphic to the set 

of integers (since the one-point compactification of R is homeomorphic 

to the unit circle). 

4. The converse of the theorem need not hold. For example, R^2 and R^3 

have isomorphic fundamental groups but are still not homeomorphic. 

Their fundamental groups are isomorphic because each space is simply 

connected. However, the two spaces cannot be homeomorphic because 

deleting a point from R^2 leaves a non-simply connected space but 

deleting a point from R^3 leaves a simply connected space (If we delete 

a line lying in R^3, the space wouldn‘t be simply connected anymore. In 

fact this generalizes to R^n whereby deleting a (n-2) dimensional 

parallelopiped from R^n leaves a non-simply connected space). 

Example 1 
Show that the topological spaces (0,1) and (0,∞) (with their 

topologies being the unions of open balls resulting from the usual 

Euclidean metric on these subsets of R) are homeomorphic. 

To show that these two topological spaces are homeomorphic we must 

find a continuous bijection f:X→Y such that f−1 is also continuous. 

Consider the following function f:(0,1)→(1,∞) given by: 

(1) 

f(x)=1/x 

We first show that f is bijection. Let x,y∈(0,1) and suppose that f(x)=f(y). 

Then: 

(2) 

1/x=1/y 

Cross multiplying gives us that then x=y, so f is injective. 

Now let b∈(1,∞). Since b>1 we have that 0<1b<1, and so let a=1b. Then: 

(3) 
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f(a)=1/a=1/1/b=b 

So for all b∈(1,∞) there exists an a∈(0,1) such that f(a)=b, so f is 

surjective. 

It's not hard to see that f is a continuous map. 

Furthermore, f−1:(1,∞)→(0,1) is also given by f−1(x)=1x (which is 

continuous), and so f is a homeomorphism between (0,1) and (1,∞), so 

these spaces are homeomorphic. 

Example 2 
Show that the spaces (−r,r), r>0 and R with the topologies obtained 

by the unions of open balls with respect to the usual Euclidean 

metric are homeomorphic. 

Consider the following function f:(−r,r)→R given by: 

(4) 

f(x)=tan(πx2r) 

Then f is clearly continuous as f will always have the following form: 

 

Further it should be clear that f−1 will always always be continuous: 

Therefore f is a homeomorphism between (−r,r) and R so these spaces 

are homeomorphic 

 

7.2 HOMEOMORPHISM 

 
A function f:X→Y is said to be a homeomorphism (topological 

mapping) if and only if the following conditions are satisfied: 

(1) f is bijective 

(2) f is continuous 

(3) f
−1

 is continuous 

 

It may be noted that if f is a homeomorphism from X to Y, then X is said 

to be homeomorphic to Y and is denoted by X≃Y. From the definition of 

a homeomorphism, it follows that X and Y are homeomorphic spaces, 

https://www.emathzone.com/tutorials/general-topology/homeomorphism.html
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then their points and open sets are put into one-to-one correspondence. In 

other words, X and Ydiffer only in the nature of their points, but from 

the point of view of the subject of topology they are identical or have the 

same topological structure. 

Remarks: ―Homeomorphism‖ helps reduce complicated problems into 

simple form, that is, an apparently complicated space may possibly be 

homeomorphic to some space more familiar to us. Hence in this way, 

one determines the properties of complicated spaces easily. 

 Theorems 

• Bijective continuous mapping f:X→Y is open if and only if f
−1

 is 

continuous. 

• If X and Y are topological spaces, let X≃Y mean that X and Y are 

homeomorphic. Then this relation is reflexive, symmetric and transitive. 

• Let X and Y be topological spaces and f:X→Y be a bijective function, 

then the following are equivalent: (1) f is a homeomorphism; (2) for any 

subset U of X, f(U) is open in Y if and only if U is open in X; (3) for any 

subset C of X, f(C) is closed in Y if and only if C is closed in X; (4) for 

any subset A of X, f(A¯¯¯¯)=f(A)¯  
 

7.2.1 Topological Property 

 
A property P is said to be a topological property if whenever a 

space X has the property P, all spaces which are homeomorphic to X also 

have the property P, X≃Y≃Z. 

In other words, a topological property is a property which, if possessed 

by a topological space, is also possessed by all topological spaces 

homeomorphic to that space. 

Note: It may noted that length, angle, boundedness, Cauchy sequence, 

straightness and being triangular or circular are not topological 

properties, whereas limit point, interior, neighborhood, boundary, first 

and second countability, and separablility are topological properties. We 

shall come across several topological properties in a following post. 

Because of its critical role the subject topology, it is usually described as 

the study of topological properties. 

  

https://www.emathzone.com/tutorials/general-topology/topological-property.html
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Examples: 

• Let X=]−1, and f:X→R be defined by f(x)=tan(πx2). Then f is a 

homeomorphism and therefore ]−1,1[≃R]−1,1[≃R. Note 

that ]−1,1[]−1,1[ and R have different lengths, therefore length is not a 

topological property. Also X is bounded and R is not bounded, therefore 

boundeness is not a topological property. 

• Let f:]0,∞[→]0,∞[ defined by f(x)=1xf(x)=1x, then f is a 

homeomorphism. Consider the sequences (xn)=(1,12,13,⋯) 

and (f(xn))=(1,2,3,…) in ]0,∞[. (xn) is a Cauchy sequence, 

where (f(xn)) is not. Therefore, being a Cauchy sequence is not a 

topological property. 

• Straightness is not a topological property, for a line may be bent and 

stretched until it is wiggly. 

• Being triangular is not a topological property since a triangle can be 

continuously deformed into a circle and conversely. 

7.2.2 Product Topology 
Products of Sets 

If X1 and X2 are two non-empty sets, then the Cartesian 

product X1×X2 is defined as X1×X2={(xi,xj:xi∈X1,xj∈X2)} 

Projection Maps 

Let A and B be non-empty sets, then they can be defined by the 

following two functions: 

(1) p1:A×B→A.  defined as p1(a,b)=ap1(a,b)=a for all (a,b)∈A×B. 

(2) p2:A×B→B defined as p2(a,b)=bp2(a,b)=b for 

all (a,b)∈A×B(a,b)∈A×B. 

The above maps are called the projection maps on A and B respectively. 

Note: Let X1,X2,X3,…Xn  be non-empty sets, then the projection 

maps p1,p2,p3,…pn be defined similarly. 

 Product Topology 

Let X1×X2be the product of topological spaces X1 and X2. The coarsest 

topology η on X1×X2 with respect to which the projection 

maps p1:X1×X2→X1 and p2:X1×X2→X2 are continuous, is said to be a 

product topology and thus the space (X1×X2,η) is said to be the product 

https://www.emathzone.com/tutorials/general-topology/product-topology.html
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space. 

Remarks 

7.2.3 Quotient Topology 

• It may be observed that if X1 and X2 are distinct topological spaces 

then the collection S={p1−(G1)
x
p−1(G2):G1∈η1,G2∈η2} form a 

subbase for product topology on X1×X2. 

• It may be noted that if A and B are any open interval, then A×B will be 

open rectangle strips. A collection of open rectangles form a basis for the 

usual topology on R2. So, generalizing this fact to the product of a finite 

number of spaces (X1,η1) and (X2,η2) are topological spaces 

then B={G1×G2:G1∈η1,G2∈η2} form a basis for product topology. 

 In this section, we will introduce a new way of constructing topological 

spaces called the quotient construction. This is intended to formalise 

pictures like the familiar picture of the 2-torus as a square with its 

opposite sides identified. 

 Mathematically, the square is a subset of the plane and specifying the 

identification of opposite sides means giving an equivalence relation on 

this set. 

 Given a space X and an equivalence relation ∼ on X, the quotient 

set X/∼ (the set of equivalence classes) inherits a topology called 

the quotient topology. Let q:X→X/∼ be the quotient map sending a 

point x to its equivalence class [x]; the quotient topology is defined to be 

the most refined topology on X/∼ (i.e. the one with the largest number of 

open sets) for which q is continuous. 

 If you try to add too many open sets to the quotient topology, their 

preimages under q may fail to be open, so the quotient map will fail to be 

continuous. More concretely, a subset U⊂X/∼ is open in the quotient 

topology if and only if q−1(U)⊂X is open. 

There is a ``most refined topology for which q is continuous'', 

equivalently the collection of subsets U for which q−1(U) is open forms 

a topology. 
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The empty set is open: its preimage is the empty set which is open in X. 

The whole space X/∼ is open: its preimage is the whole space X, which 

is open in X. 

The preimage of a union is the union of the preimages, so if U is a 

collection of open sets in X/∼X/∼ then ⋃U∈U,U is open because its 

preimage under q is ⋃U∈Uq−1(U) which is a union of open sets in X. 

The preimage of an intersection is the intersection of the preimages, so 

similarly the quotient topology allows finite intersections of open sets. 

Examples 

I want to give you some examples which indicate why this definition 

captures the intuitive idea we have of forming a topological space by 

making identifications. 

Let X=[0,1] and let ∼ be the equivalence relation which has as 

equivalence classes singleton sets {x} for x∈(0,1) and the set {0,1}. The 

quotient space should be the circle, where we have identified the 

endpoints of the interval. Indeed, we can map X to the unit 

circle S1⊂C via the map q(x)=e2πix: this map takes 0 and 1 to 1∈S1 and 

is bijective elsewhere, so it is true that S1 is the set-theoretic quotient. 

We want to see that the usual topology on the circle is the quotient 

topology. Here are some open sets in S1 and their preimages under qq: 

  If I take an arc in S1 which does not pass through the 

point 1∈S then its preimage is an interval in (0,1). The arc in the 

circle (in the subspace topology coming from C is open if and 

only if it is obtained by intersecting the circle with an open ball; 

in particular, it doesn't contain its endpoints. Similarly, the 

interval in (0,1) is open if and only if it doesn't contain its 

endpoints, so at least for these arcs in S1∖{1} we see that the arc 

is open if and only if its q-preimage is open. 

  If I take an arc in S1 which does pass through 1∈S1 then its 

preimage is a pair of intervals [0,a}∪{b,1], which is open in the 

subspace topology on [0,1]⊂R if and only if the brackets {,} are 
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open brackets (the fact that the endpoints 0 and 1 are included 

does not stop it from being an open set: remember that [0,1] is an 

open set in [0,1]). These brackets are open if and only if the arc 

in S1 does not contain its endpoints, if and only if it is open in the 

subspace topology on S1. 

The quotient space is therefore making formal the notion that when you 

walk off the end  

of the interval, you come back at the other end: the preimage of an open 

set which crosses the point 1 is a pair of open sets at either end of the 

interval. 

 Let S=[0,1]×[0,1] be the square in R2 and let ∼ be the equivalence 

relation which identifies opposite sides (red with red, blue with blue in 

the figure below). We know this is supposed to be the 2-torus: 

 

What is the preimage of the open green disc in the torus? It is a 

collection of four green quarter-discs at the corners of the square. This 

is open in the subspace topology on the square. 

What happens if I take one of these quarter discs and look at its image in 

the torus? Clearly from looking at the picture, this should not give me an 

open set: the quarter disc includes the two closed intervals where it 

intersects the boundary of the square, which is fine when considered in 

the subspace topology on the square, but we don't want an open subset of 

the torus to look like a quarter-disc which is open along its curved edge 

and closed on its two straight edges. 
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 The quotient topology fixes this for us. The preimage of this quarter-

disc Vin the torus certainly contains the quarter-disc in the square. But it 

also contains: 

 two further intervals which are identified with sides of the 

quarter-disc under the equivalence relation, 

 the remaining vertex of the square, which is identified with the 

centre of the quarter-disc under the equivalence relation. 

That is definitely not an open set in the square, so q−1(V)) is not open, 

so V is not open. 

 

 Take an octagon with side identifications as in the figure (ignore 

the horizontal purple line for now): 

 

The quotient space turns out to be a surface of genus 2: 
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You can understand this as follows: the purple line in the diagram 

becomes a circle in the quotient which slices the surface into two 

punctured tori; each half of the octagon is (topologically) a square (with 

the side identifications for the torus) with a puncture. 

 More generally, you can take a quotient of a 4g-gon to get a 

genus g surface. 

7.3 CRUSHING A SUBSPACE TO A POINT 

) Let X be a space and A⊂X be a subspace. Let ∼∼ be the equivalence 

relation whose equivalence classes are A and {x}for x∉Ax. The quotient 

space X/∼ is usually written X/A: we think of this as the space obtained 

from X by crushing A down to a single point. 

If X=[0,1] and A={0,1} then X/A=S1. 

If X=D2 is the 2-disc and A=∂D2 (the boundary circle) then X/A=S2 (if 

we think of the centre of the disc as the North Pole then all the points 

in A are identified to get the South Pole. 

 Let X=S1×S1 be the 2-torus and let A=S1×{pt} be a meridian circle on 

the torus (the red circle in the figure). The quotient X/A is a pinched 

torus: see the figure below. 

7.3.1 Pre-class questions 

1. Let X be the space in the figure below and let A be the 

red subset. What is the topological space X/A? 
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Check In Progress-I 

Q. 1 Define Product Topology.  

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

Q. 2 Define Homomophism 

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

7.4 TOPOLOGICAL MANIFOLD 
 

In topology, a branch of mathematics, a topological manifold is 

a topological space (which may also be a separated space) which locally 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Hausdorff_space
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resembles real n-dimensional space in a sense defined below. 

Topological manifolds form an important class of topological spaces 

with applications throughout mathematics. All manifolds are topological 

manifolds by definition, but many manifolds may be equipped with 

additional structure (e.g. differentiable manifolds are topological 

manifolds equipped with a differential structure). Every manifold has an 

"underlying" topological manifold, gotten by simply "forgetting" any 

additional structure the manifold has.
  

 

 

7.4.1 Manifold 
On a sphere, the sum of the angles of a triangle is not equal to 180°. A 

sphere is not a Euclidean space, but locally the laws of the Euclidean 

geometry are good approximations. In a small triangle on the face of the 

earth, the sum of the angles is very nearly 180°. A sphere can be 

represented by a collection of two dimensional maps, therefore a sphere 

is a manifold. 

A manifold is an abstract mathematical space in which every point has a 

neighbourhood which resembles Euclidean space, but in which the 

global structure may be more complicated. In discussing manifolds, the 

idea of dimension is important. For example, lines are one-dimensional, 

and planes are two-dimensional. 

In a one-dimensional manifold (or one-manifold), every point has a 

neighbourhood that looks like a segment of a line. Examples of one-

manifolds include a line, a circle, and two separate circles. In a two-

manifold, every point has a neighbourhood that looks like a disk. 

Examples include a plane, the surface of a sphere, and the surface of 

a torus. 

Manifolds are important objects in mathematics and physics because 

they allow more complicated structures to be expressed and understood 

in terms of the relatively well-understood properties of simpler spaces. 

Additional structures are often defined on manifolds. Examples of 

manifolds with additional structure include differentiable manifolds on 

https://en.wikipedia.org/wiki/Real_numbers
https://en.wikipedia.org/wiki/Dimension_(mathematics)
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Differentiable_manifold
https://en.wikipedia.org/wiki/Differential_structure
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/e/Euclidean_geometry.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/s/Sphere.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/p/Physics.htm
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which one can do calculus, Riemannian manifolds on which distances 

and angles can be defined, symplectic manifolds which serve as 

the phase space in classical mechanics, and the four-dimensional pseudo-

Riemannian manifolds which model space-time in general relativity. 

A technical mathematical definition of a manifold is given below. To 

fully understand the mathematics behind manifolds, it is necessary to 

know elementary concepts regarding sets and functions, and helpful to 

have a working knowledge of calculus and topology. 

 

 

7.4.2 Motivational examples 
 

7.4.2.1 Circle 

 

The four charts each map part of the circle to an open interval, and 

together cover the whole circle. The origin is understood to be at the 

centre of the circle. 

The circle is the simplest example of a topological manifold after a line. 

Topology ignores bending, so a small piece of a circle is exactly the 

same as a small piece of a line. Consider, for instance, the top half of 

the unit circle, x
2
 + y

2
 = 1, where the y-coordinate is positive (indicated 

by the yellow arc in Figure 1). Any point of this semicircle can be 

uniquely described by its x-coordinate. So, by projecting onto the first 

coordinate, one obtains a continuous mapping between the semicircle 

and the open interval (−1, 1): 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/c/Calculus.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/c/Calculus.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/t/Topology.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26332.png.htm
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Such a function is called a chart. Similarly, there are charts for the 

bottom (red), left (blue), and right (green) parts of the circle. Together, 

these parts cover the whole circle and the four charts form an atlas for 

the circle. 

The top and right charts overlap: their intersection lies in the quarter of 

the circle where both the x- and the y-coordinates are positive. The two 

charts χtop and χright each map this part bijectively to the interval (0, 1). 

Thus a function T from (0, 1) to itself can be constructed, which first 

inverts the yellow chart to reach the circle and then follows the green 

chart back to the interval. Let a be any number in (0, 1), then: 

 

Such a function is called a transition map. 

 

 

 A circle manifold chart based on slope, covering all but one point of the 

circle. 

The top, bottom, left, and right charts show that the circle is a manifold, 

but they do not form the only possible atlas. Charts need not be 

geometric projections, and the number of charts is a matter of some 

choice. Consider the charts 

 

and 

 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26333.png.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26333.png.htm
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Here s is the slope of the line through the point at coordinates (x,y) 

and the fixed pivot point (−1,0); t is the mirror image, with pivot point 

(+1,0). The inverse mapping from s to (x,y) is given by 

 

it can easily be confirmed that x2+y2 = 1 for 

all values of the slope s. These two charts 

provide a second atlas for the circle, with 

 

Each chart omits a single point, either (−1,0) for s or (+1,0) for t, so 

neither chart alone is sufficient to cover the whole circle. It is not 

possible to cover the full circle with a single chart, since the circle is 

doubly connected and the line is only simply connected. Note that it is 

possible to construct a circle by "gluing" together a single piece of the 

line; this does not produce a chart, since a portion of the circle will be 

mapped to both "glued" regions at once. 

 

7.4.2.2 Other curve 

 

 

Four manifolds from algebraic 

curves: ■ circles, ■ parabola, ■ hyperbola, ■ cubic. 

Manifolds need not be connected (all in "one piece"); thus a pair of 

separate circles is also a manifold. They need not be closed; thus a line 

segment without its ends is a manifold. And they need not be finite; thus 

a parabola is a manifold. Putting these freedoms together, two other 

example manifolds are a hyperbola (two open, infinite pieces) and 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26334.png.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26334.png.htm
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the locus of points on the cubic curve y
2
 = x

3
−x (a closed loop piece and 

an open, infinite piece). 

However, we exclude examples like two touching circles that share a 

point to form a figure-8; at the shared point we cannot create a 

satisfactory chart. Even with the bending allowed by topology, the 

vicinity of the shared point looks like a "+", not a line. 

7.4.2.3 Enriched circle 

Viewed using calculus, the circle transition function T is simply a 

function between open intervals, which gives a meaning to the statement 

that T is differentiable. The transition map T, and all the others, are 

differentiable on (0, 1); therefore, with this atlas the circle is 

a differentiable manifold. It is also smooth and analytic because the 

transition functions have these properties as well. 

Other circle properties allow it to meet the requirements of more 

specialized types of manifold. For example, the circle has a notion of 

distance between two points, the arc-length between the points; hence it 

is a Riemannian manifold. 

The study of manifolds combines many important areas of mathematics: 

it generalizes concepts such as curves and surfaces as well as ideas 

from linear algebra and topology. Certain special classes of manifolds 

also have additional algebraic structure; they may behave like groups, for 

instance. 

Before the modern concept of a manifold there were several important 

results. 

Carl Friedrich Gauss may have been the first to consider abstract spaces 

as mathematical objects in their own right. His theorema egregium gives 

a method for computing the curvature of a surface without considering 

the ambient space in which the surface lies. Such a surface would, in 

modern terminology, be called a manifold; and in modern terms, the 

theorem proved that the curvature of the surface is an intrinsic property. 

Manifold theory has come to focus exclusively on these intrinsic 

properties (or invariants), while largely ignoring the extrinsic properties 

of the ambient space. 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/c/Calculus.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/l/Linear_algebra.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/t/Topology.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/g/Group_%2528mathematics%2529.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/c/Carl_Friedrich_Gauss.htm
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Another, more topological example of an intrinsic property of a manifold 

is the Euler characteristic. For a non-intersecting graph in Euclidean 2-

dimensional space, with V vertices (or corners), E edges and F faces 

(counting the exterior) Euler showed that V-E+F= 2. Thus 2 is called the 

Euler characteristic of Euclidean 2-dimensional space. By contrast, the 

Euler characteristic of the torus is 0, since the complete graph on seven 

points can be embedded into the torus. The Euler characteristic of other 

2-dimensional spaces is a useful topological invariant, which can be 

extended to higher dimensions using Betti numbers. 

Non-Euclidean geometry considers spaces where Euclid's parallel 

postulate fails. Saccheri first studied them in 1733. Lobachevsky, Bolyai, 

and Riemann developed them 100 years later. Their research uncovered 

two types of spaces whose geometric structures differ from that of 

classical Euclidean space; these gave rise to hyperbolic geometry 

and elliptic geometry. In the modern theory of manifolds, these notions 

correspond to manifolds with constant negative and positive curvature, 

respectively. 

7.4.2.4 Synthesis 

Bernhard Riemann was the first to do extensive work generalizing the 

idea of a surface to higher dimensions. The name manifold comes from 

Riemann's original German term, Mannigfaltigkeit, which William 

Kingdon Clifford translated as "manifoldness". In his Göttingen 

inaugural lecture, Riemann described the set of all possible values of a 

variable with certain constraints as a Mannigfaltigkeit, because the 

variable can have many values. He distinguishes between stetige 

Mannigfaltigkeit and diskrete Mannigfaltigkeit (continuous 

manifoldness and discontinuous manifoldness), depending on whether 

the value changes continuously or not. As continuous examples, 

Riemann refers to not only colors and the locations of objects in space, 

but also the possible shapes of a spatial figure. Using induction, Riemann 

constructs an n-fach ausgedehnte Mannigfaltigkeit (n times extended 

manifoldness or n-dimensional manifoldness) as a continuous stack of 

(n−1) dimensional manifoldnesses. Riemann's intuitive notion of 

a Mannigfaltigkeit evolved into what is today formalized as a 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/t/Topology.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/l/Leonhard_Euler.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/e/Euclid.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/g/German_language.htm
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manifold. Riemannian manifolds and Riemann surfaces are named after 

Bernhard Riemann. 

In the study of complex variables, the process of analytic continuation 

leads to the construction of manifolds. 

Abelian varieties were already implicitly known in Riemann's time 

as complex manifolds. Lagrangian mechanics and Hamiltonian 

mechanics, when considered geometrically, are also naturally manifold 

theories. All these use the notion of several characteristic axes 

or dimensions (known as generalized coordinates in the latter two cases), 

but these dimensions do not lie along the physical dimensions of width, 

height, and breadth. 

Henri Poincaré studied three-dimensional manifolds and raised a 

question, today known as the Poincaré conjecture. As of 2006, a 

consensus among experts is that recent work by Grigori Perelman may 

have answered this question, after nearly a century of effort by many 

mathematicians. 

Hermann Weyl gave an intrinsic definition for differentiable manifolds 

in 1912. During the 1930s Hassler Whitney and others clarified 

the foundational aspects of the subject, and thus intuitions dating back to 

the latter half of the 19th century became precise, and developed 

through differential geometry and Lie group theory. 

Mathematical definition 

In topology, an n-manifold is a second countable Hausdorff space in 

which every point has a neighbourhood homeomorphic to an open 

Euclidean n-ball, 

 

Unless otherwise stated, a manifold is an n-manifold for some positive 

integer n, perhaps with additional structure. However, some authors 

admit manifolds which are not n-manifolds, in the sense that they allow 

different connected components to have different topological dimension. 
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The second countable condition excludes spaces such as the long line. 

The Hausdorff condition avoids spaces such as the one formed by 

identifying two real lines at every point except the origin: 

R × {a} and R × {b} 

with the equivalence relation 

 if  

which has a single point for each nonzero real number r plus two points 

0a and 0b. In this space all neighbourhoods of 0a intersect all 

neighbourhoods of 0b. 

There are many different kinds of manifold. All manifolds 

are topological manifolds, which locally have the topology of 

some Euclidean space. If there is additional structure, the structure on 

each map must be consistent with the overlapping maps. Differentiable 

manifolds have homeomorphisms on overlapping 

neighborhoods diffeomorphic with each other, so that the manifold has a 

well-defined set of functions which are differentiable in each 

neighbourhood, and so differentiable on the manifold as a whole. 

 

7.5 CHARTS, ATLASES, AND 

TRANSITION MAPS 

The spherical Earth is navigated using flat maps or charts, collected in an 

atlas. Similarly, a differentiable manifold can be described 

using mathematical maps, called coordinate charts, collected in a 

mathematical atlas. It is not generally possible to describe a manifold 

with just one chart, because the global structure of the manifold is 

different from the simple structure of the charts. For example, no single 

flat map can properly represent the entire Earth. When a manifold is 

constructed from multiple overlapping charts, the regions where they 

overlap carry information essential to understanding the global structure. 

7.5.1 Charts 

A coordinate map, a coordinate chart, or simply a chart, of a manifold 

is an invertible map between a subset of the manifold and a simple space 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/t/Topology.htm
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such that both the map and its inverse preserve the desired structure. For 

a topological manifold, the simple space is some Euclidean space R
n
 and 

interest focuses on the topological structure. This structure is preserved 

by homeomorphisms, invertible maps that are continuous in both 

directions. 

In the case of a differentiable manifold, a set of charts called 

an atlas allows us to do calculus on manifolds. Polar coordinates, for 

example, form a chart for the plane R² minus the positive x-axis and the 

origin. Another example of a chart is the map χtop mentioned in the 

section above, a chart for the circle. 

7.5.2 Atlases 

The description of most manifolds requires more than one chart (a single 

chart is adequate for only the simplest manifolds). A specific collection 

of charts which covers a manifold is called an atlas. An atlas is not 

unique as all manifolds can be covered multiple ways using different 

combinations of charts. 

The atlas containing all possible charts consistent with a given atlas is 

called the maximal atlas. Unlike an ordinary atlas, the maximal atlas of 

a given atlas is unique. Though it is useful for definitions, it is a very 

abstract object and not used directly (e.g. in calculations). 

7.5.3 Transition Maps 

Charts in an atlas may overlap and a single point of a manifold may be 

represented in several charts. If two charts overlap, parts of them 

represent the same region of the manifold, just as a map of Europe and a 

map of Asia may both contain Moscow. Given two overlapping charts, 

a transition function can be defined which goes from an open ball 

in R
n
 to the manifold and then back to another (or perhaps the same) 

open ball in R
n
. The resultant map, like the map T in the circle example 

above, is called a change of coordinates, a coordinate transformation, 

a transition function, or a transition map. 

7.5.4 Additional Structure 

An atlas can also be used to define additional structure on the manifold. 

The structure is first defined on each chart separately. If all the transition 
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maps are compatible with this structure, the structure transfers to the 

manifold. 

This is the standard way differentiable manifolds are defined. If the 

transition functions of an atlas for a topological manifold preserve the 

natural differential structure of R
n
 (that is, if they are diffeomorphisms), 

the differential structure transfers to the manifold and turns it into a 

differentiable manifold. 

In general the structure on the manifold depends on the atlas, but 

sometimes different atlases give rise to the same structure. Such atlases 

are called compatible. 

 

7.6 CONSTRUCTION 

A single manifold can be constructed in different ways, each stressing 

a different aspect of the manifold, thereby leading to a slightly 

different viewpoint. 

7.6.1 Charts 

 

 

The chart maps the part of the sphere with positive z coordinate to a disc. 

Perhaps the simplest way to construct a manifold is the one used in the 

example above of the circle. First, a subset of R² is identified, and then 

an atlas covering this subset is constructed. The concept 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26335.png.htm
https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26335.png.htm


Notes 

192 

of manifold grew historically from constructions like this. Here is 

another example, applying this method to the construction of a sphere: 

Sphere with charts 

A sphere can be treated in almost the same way as the circle. In 

mathematics a sphere is just the surface (not the solid interior), which 

can be defined as a subset of R³: 

 

The sphere is two-dimensional, so each chart will map part of the sphere 

to an open subset of R
2
. Consider the northern hemisphere, which is the 

part with positive z coordinate (coloured red in the picture on the right). 

The function χ defined by 

χ(x,y,z) = (x,y), 

maps the northern hemisphere to the open unit disc by projecting it on 

the (x, y) plane. A similar chart exists for the southern hemisphere. 

Together with two charts projecting on the (x, z) plane and two charts 

projecting on the (y, z) plane, an atlas of six charts is obtained which 

covers the entire sphere. 

This can be easily generalized to higher-dimensional spheres. 

7.6.2 Patchwork 

A manifold can be constructed by gluing together pieces in a consistent 

manner, making them into overlapping charts. This construction is 

possible for any manifold and hence it is often used as a characterisation, 

especially for differentiable and Riemannian manifolds. It focuses on an 

atlas, as the patches naturally provide charts, and since there is no 

exterior space involved it leads to an intrinsic view of the manifold. 

The manifold is constructed by specifying an atlas, which is itself 

defined by transition maps. A point of the manifold is therefore 

an equivalence class of points which are mapped to each other by 

transition maps. Charts map equivalence classes to points of a single 

patch. There are usually strong demands on the consistency of the 

transition maps. For topological manifolds they are required to 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/s/Sphere.htm
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be homeomorphisms; if they are also diffeomorphisms, the resulting 

manifold is a differentiable manifold. 

This can be illustrated with the transition map t = 
1
⁄s from the second half 

of the circle example. Start with two copies of the line. Use the 

coordinate s for the first copy, and t for the second copy. Now, glue both 

copies together by identifying the point t on the second copy with the 

point 
1
⁄s on the first copy (the point t = 0 is not identified with any point 

on the first copy). This gives a circle. 

Intrinsic and extrinsic view 

The first construction and this construction are very similar, but they 

represent rather different points of view. In the first construction, the 

manifold is seen as embedded in some Euclidean space. This is 

the extrinsic view. When a manifold is viewed in this way, it is easy to 

use intuition from Euclidean spaces to define additional structure. For 

example, in a Euclidean space it is always clear whether a vector at some 

point is tangential or normal to some surface through that point. 

The patchwork construction does not use any embedding, but simply 

views the manifold as a topological space by itself. This abstract point of 

view is called the intrinsic view. It can make it harder to imagine what a 

tangent vector might be. 

n-Sphere as a patchwork 

The n-sphere S
n
 is a generalisation of the idea of a circle (1-sphere) and 

sphere (2-sphere) to higher dimensions. An n-sphere S
n
 can be 

constructed by gluing together two copies of R
n
. The transition map 

between them is defined as 

 

This function is its own inverse and thus can be used in both directions. 

As the transition map is a smooth function, this atlas defines a smooth 

manifold. In the case n = 1, the example simplifies to the circle example 

given earlier. 
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7.6.3 Identifying points of a Manifold 

It is possible to define different points of a manifold to be same. This can 

be visualized as gluing these points together in a single point, forming 

a quotient space. There is, however, no reason to expect such quotient 

spaces to be manifolds. Among the possible quotient spaces that are not 

necessarily manifolds, orbifolds and CW complexes are considered to be 

relatively well-behaved. 

One method of identifying points (gluing them together) is through a 

right (or left) action of a group, which acts on the manifold. Two points 

are identified if one is moved onto the other by some group element. 

If M is the manifold and G is the group, the resulting quotient space is 

denoted by M / G (or G \ M). 

Manifolds which can be constructed by identifying points include tori 

and real projective spaces (starting with a plane and a sphere, 

respectively). 

7.6.4 Cartesian Products 

The Cartesian product of manifolds is also a manifold. Not every 

manifold can be written as a product. 

The dimension of the product manifold is the sum of the dimensions of 

its factors. Its topology is the product topology, and a Cartesian product 

of charts is a chart for the product manifold. Thus, an atlas for the 

product manifold can be constructed using atlases for its factors. If these 

atlases define a differential structure on the factors, the corresponding 

atlas defines a differential structure on the product manifold. The same is 

true for any other structure defined on the factors. If one of the factors 

has a boundary, the product manifold also has a boundary. Cartesian 

products may be used to construct tori and finite cylinders, for example, 

as S¹ × S¹ and S¹ × [0, 1], respectively. 

7.6.5 Manifold with Boundary 

A manifold with boundary is a manifold with an edge. For example a 

sheet of paper with rounded corners is a 2-manifold with a 1-dimensional 

boundary. The edge of an n-manifold is an (n-1)-manifold. A disk (circle 

plus interior) is a 2-manifold with boundary. Its boundary is a circle, a 1-

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/g/Group_%2528mathematics%2529.htm
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manifold. A ball (sphere plus interior) is a 3-manifold with boundary. Its 

boundary is a sphere, a 2-manifold. (See also Boundary (topology)). 

In technical language, a manifold with boundary is a space containing 

both interior points and boundary points.Every interior point has a 

neighbourhood homeomorphic to the open n-ball {(x1, x2, …, xn) | Σ xi
2
 < 

1}. Every boundary point has a neighbourhood homeomorphic to the 

"half" n-ball {(x1, x2, …, xn) | Σ xi
2
 < 1 and x1 ≥ 0}. The homeomorphism 

must send the boundary point to a point with x1 = 0. 

7.6.6 Gluing along boundaries 

Two manifolds with boundaries can be glued together along a boundary. 

If this is done the right way, the result is also a manifold. Similarly, two 

boundaries of a single manifold can be glued together 

Formally, the gluing is defined by a bijection between the two 

boundaries. Two points are identified when they are mapped onto each 

other. For a topological manifold this bijection should be a 

homeomorphism, otherwise the result will not be a topological manifold. 

Similarly for a differentiable manifold it has to be a diffeomorphism. For 

other manifolds other structures should be preserved. 

A finite cylinder may be constructed as a manifold by starting with a 

strip R × [0, 1] and gluing a pair of opposite edges on the boundary by a 

suitable diffeomorphism. A projective plane may be obtained by gluing a 

sphere with a hole in it to a Möbius strip along their respective circular 

boundaries. 

 

Check In Progress-II 

Q. 1 Define chart.  

Solution : 

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 
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…………………………………………………………………………… 

Q. 2 What is Manifold.  

Solution :  

…………………………………………………………………………… 

…………………………………………………………………………… 

…………………………………………………………………………… 

  

7.7 CLASSES OF MANIFOLDS 

 

7.7.1 Topological Manifolds 

The simplest kind of manifold to define is the topological manifold, 

which looks locally like some "ordinary" Euclidean space R
n
. Formally, 

a topological manifold is a topological space locally homeomorphic to a 

Euclidean space. This means that every point has a neighbourhood for 

which there exists a homeomorphism (a bijective continuous function 

whose inverse is also continuous) mapping that neighbourhood to R
n
. 

These homeomorphisms are the charts of the manifold. 

Usually additional technical assumptions on the topological space are 

made to exclude pathological cases. It is customary to require that the 

space be Hausdorff and second countable. 

The dimension of the manifold at a certain point is the dimension of the 

Euclidean space charts at that point map to (number n in the definition). 

All points in a connected manifold have the same dimension. Some 

authors require that all charts of a topological manifold map to the same 

Euclidean space. In that case every topological manifold has a 

topological invariant, its dimension. Other authors allow disjoint unions 

of topological manifolds with differing dimensions to be called 

manifolds. 
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For most applications a special kind of topological manifold, 

a differentiable manifold, is used. If the local charts on a manifold are 

compatible in a certain sense, one can define directions, tangent spaces, 

and differentiable functions on that manifold. In particular it is possible 

to use calculus on a differentiable manifold. Each point of an n-

dimensional differentiable manifold has a tangent space. This is an n-

dimensional Euclidean space consisting of the tangent vectors of the 

curves through the point. 

Two important classes of differentiable manifolds 

are smooth and analytic manifolds. For smooth manifolds the transition 

maps are smooth, that is infinitely differentiable. Analytic manifolds are 

smooth manifolds with the additional condition that the transition maps 

are analytic (a technical definition which loosely means that Taylor's 

theorem holds). The sphere can be given analytic structure, as can most 

familiar curves and surfaces. 

A rectifiable set generalizes the idea of a piecewise smooth or rectifiable 

curve to higher dimensions; however, rectifiable sets are not in general 

manifolds. 

 

7.7.2 Riemannian manifolds 

To measure distances and angles on manifolds, the manifold must be 

Riemannian. A Riemannian manifold is an analytic manifold in which 

each tangent space is equipped with an inner product ⟨ , ⟩ in a manner 

which varies smoothly from point to point. Given two tangent 

vectors u and v the inner product ⟨u,v⟩ gives a real number. The dot (or 

scalar) product is a typical example of an inner product. This allows one 

to define various notions such as length, angles, areas 

(or volumes), curvature, gradients of functions and divergence of vector 

fields. 

Most familiar curves and surfaces, including n-spheres and Euclidean 

space, can be given the structure of a Riemannian manifold. 
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7.7.3 Finsler Manifolds 

A Finsler manifold allows the definition of distance, but not of angle; it 

is an analytic manifold in which each tangent space is equipped with 

a norm, ||·||, in a manner which varies smoothly from point to point. This 

norm can be extended to a metric, defining the length of a curve; but it 

cannot in general be used to define an inner product. 

Any Riemannian manifold is a Finsler manifold. 

 

7.7.4 Lie groups 

Lie groups are a particularly important class of manifolds. They were 

named after Sophus Lie (last name pronounced Lee). As well as having 

an inner product they also have the structure of a topological group, 

allowing a notion of multiplication of points on the manifold. 

Any compact Lie group can be given a Riemannian manifold structure. 

The circle can be given the structure of a Lie group — the circle group. 

The group structure is then the multiplicative group of all complex 

numbers with modulus 1. 

A Euclidean vector space with the group operation of vector addition is 

an example of a non-compact Lie group. Other examples of Lie groups 

include special groups of matrices, which are all subgroups of 

the general linear group, the group of n by n matrices with non-zero 

determinant. If the matrix entries are real numbers, this will be an n
2
-

dimensional disconnected manifold. The orthogonal groups, 

the symmetry groups of the sphere and hyperspheres, are n(n-1)/2 

dimensional manifolds, where n-1 is the dimension of the sphere. Further 

examples can be found in the table of Lie groups.v 

 

7.7.5 Other Types of Manifolds 

A complex manifold is a manifold modeled on C
n
 with holomorphic 

transition functions on chart overlaps. These manifolds are the basic 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/m/Matrix_%2528mathematics%2529.htm
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objects of study in complex geometry. A one-complex-dimensional 

manifold is called a Riemann surface. (Note that an n-dimensional 

complex manifold has dimension 2n as a differentiable manifold.) 

Infinite dimensional manifolds: to allow for infinite dimensions, one 

may consider Banach manifolds which are locally homeomorphic 

to Banach spaces. Similarly, Fréchet manifolds are locally 

homeomorphic to Fréchet spaces. 

A symplectic manifold is a kind of manifold which is used to represent 

the phase spaces in classical mechanics. They are endowed with a 2-form 

that defines the Poisson bracket. A closely related type of manifold is 

a contact manifold. 

 

7.8 SUMMARY 

We study in this unit Topological Manifold and Its properties. We study 

classes of Manifold. We study Enriched Circles. We study 

Homomorphism  and its properties.  

 

7.9 KEYWORD 

MANIFOLD : A collection of points forming a certain kind 

of set, such as those of a topologically closed surface or an analogue 

of this in three or more dimensions. 

FINSELER : A Finsler manifold is a differentiable manifold 

M together with a ... is a continuous nonnegative function 

7.10 EXERCISE  

1 (Baire Category Theorem). A Hausdorff space that is locally compact 

satisfies: A countable union of closed sets without interiors has no 

interior. 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/images/263/26337.png.htm
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2 . The set of rationals Q ⊂ R forms a metrizable space that does not 

admit a complete metric nor is it locally compact. 

3 (Whitney Embedding, Final Version). An m-dimensional manifold M 

admits a proper embedding into R 2m+1 

4 Let F : M → N be an immersion that is an embedding when restricted 

to the embedded submanifold S ⊂ M, then F is an embedding on a 

neighborhood of S 

5 Let M ⊂ R n be an embedded submanifold. Then some 

neighborhood of the normal bundle of M in R n is diffeomorphic to a 

neighborhood of M in R n 

 

7.11 ANSWER FOR CHECK IN 

PROGRESS 

 

Check in Progress-I 

Answer  Q. 1 Check in Section 2.2 

              Q 2 Check in Section 2 

Check in Progress-II 

Answer  Q. 1 Check in Section 5.1 

              Q 2 Check in Section 4.1 
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